CISPLATIN

Cisplatinum

$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
[15663-27-1]

DEFINITION

Cisplatin contains not less than 97.0 per cent and not more than the equivalent of 102.0 per cent of cis-diamminedi-chloroplatinum (II).

CHARACTERS

A yellow powder or yellow or orange-yellow crystals, slightly soluble in water, sparingly soluble in dimethylformamide, practically insoluble in alcohol.
It decomposes with blackening at about $270^{\circ} \mathrm{C}$.
Carry out identification test B, the tests (except that for silver) and the assay protected from light.

IDENTIFICATION

First identification: A, B.
Second identification: B, C.
A. Examine by infrared absorption spectrophotometry (2.2.24), comparing with the spectrum obtained with cisplatin CRS. Examine the substances prepared as discs in potassium bromide R.
B. Examine the chromatograms obtained in the test for related substances. The principal spot in the chromatogram obtained with test solution (a) is similar in position, colour and size to the principal spot in the chromatogram obtained with reference solution (a).
C. Add 50 mg to 2 ml of dilute sodium hydroxide solution R in a glass dish. Evaporate to dryness. Dissolve the residue in a mixture of 0.5 ml of nitric acid R and 1.5 ml of hydrochloric acid R. Evaporate to dryness. The residue is orange. Dissolve the residue in 0.5 ml of water R and add 0.5 ml of ammonium chloride solution R. A yellow, crystalline precipitate is formed.

TESTS

Solution S1. Dissolve 25 mg in a $9 \mathrm{~g} / 1$ solution of sodium chloride R prepared with carbon dioxide-free water R and dilute to 25 ml with the same solvent.
Solution S2. Dissolve 0.20 g in dimethylformamide R and dilute to 10 ml with the same solvent.
Appearance of solution S1. Solution S1 is clear (2.2.1) and not more intensely coloured than reference solution GY_{5} (2.2.2, Method II).

Appearance of solution S2. Solution S2 is clear (2.2.1).
$\mathbf{p H}$ (2.2.3). The $\mathbf{p H}$ of solution S1, measured immediately after preparation, is 4.5 to 6.0.
Related substances. Examine by thin-layer chromatography (2.2.27), using cellulose for chromatography R1 as the coating substance. Activate the plate by heating at $150^{\circ} \mathrm{C}$ for 1 h .
Test solution (a). Dilute 1 ml of solution S 2 to 10 ml with dimethylformamide R.
Test solution (b). Use solution S2.

Reference solution (a). Dissolve 10 mg of cisplatin CRS in 5 ml of dimethylformamide R.
Reference solution (b). Dilute 1 ml of solution S 2 to 50 ml with dimethylformamide R.
Apply separately to the plate $2.5 \mu \mathrm{l}$ of test solution (a), $2.5 \mu \mathrm{l}$ of reference solution (a), $5 \mu \mathrm{l}$ of test solution (b) and $5 \mu \mathrm{l}$ of reference solution (b). Develop over a path of 15 cm using a mixture of 10 volumes of acetone R and 90 volumes of dimethylformamide R. Allow the plate to dry in air and spray with a $50 \mathrm{~g} / \mathrm{l}$ solution of stannous chloride R in a mixture of equal volumes of dilute hydrochloric acid R and water R. After 1 h , the chromatogram obtained with test solution (b) shows no spot with an R_{F} value less than that of the principal spot and any spot with an R_{F} value greater than that of the principal spot is not more intense than the spot in the chromatogram obtained with reference solution (b).
Silver. Not more than $2.5 \times 10^{2} \mathrm{ppm}$ of Ag, determined by atomic absorption spectrometry (2.2.23, Method I). Test solution. Dissolve 0.100 g of the substance to be examined in 15 ml of nitric acid R, heating to $80^{\circ} \mathrm{C}$. Cool and dilute to 25.0 ml with water R.
Reference solutions. To suitable volumes (10 ml to 30 ml) of silver standard solution (5 ppm Ag) R add 50 ml of nitric $\operatorname{acid} R$ and dilute to 100.0 ml with water R.
Measure the absorbance at 328 nm using a silver hollow-cathode lamp as source of radiation, a fuel-lean air-acetylene flame and, preferably, a spectral slit width of 0.5 nm . Carry out a blank determination.

ASSAY

Examine by liquid chromatography (2.2.29).
Test solution. Dissolve 50.0 mg of the substance to be examined in a $9 \mathrm{~g} / 1$ solution of sodium chloride R and dilute to 100.0 ml with the same solvent.
Reference solution. Dissolve 50.0 mg of cisplatin $C R S$ in a $9 \mathrm{~g} / 1$ solution of sodium chloride R and dilute to 100.0 ml with the same solvent.
The chromatographic procedure may be carried out using:

- a column 0.25 m long and 4.6 mm in internal diameter packed with strong-anion-exchange silica gel for chromatography $R(10 \mu \mathrm{~m})$,
- as mobile phase at a flow rate of $1.2 \mathrm{ml} / \mathrm{min}$ a mixture of 10 volumes of a $9 \mathrm{~g} / \mathrm{l}$ solution of sodium chloride R and 90 volumes of methanol R,
- as detector a spectrophotometer set at 220 nm .

Use a sample loop. Inject separately $20 \mu \mathrm{l}$ of the test solution and $20 \mu \mathrm{l}$ of the reference solution.

STORAGE

Store in an airtight container, protected from light.

01/2008:0455

corrected 6.0

CITRIC ACID, ANHYDROUS

Acidum citricum anhydricum

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
$M_{\mathrm{r}} 192.1$
[77-92-9]

DEFINITION

2-Hydroxypropane-1,2,3-tricarboxylic acid.

Content: 99.5 per cent to 100.5 per cent (anhydrous substance).

CHARACTERS

| Appearance: white or almost white, crystalline powder, colourless crystals or granules.
Solubility: very soluble in water, freely soluble in ethanol (96 per cent).
mp : about $153{ }^{\circ} \mathrm{C}$, with decomposition.

IDENTIFICATION

First identification: B, E.
Second identification: A, C, D, E.
A. Dissolve 1 g in 10 ml of water R. The solution is strongly acidic (2.2.4).
B. Infrared absorption spectrophotometry (2.2.24).

Preparation: dry the substance to be examined and the reference substance at $100-105{ }^{\circ} \mathrm{C}$ for 2 h .
Comparison: anhydrous citric acid CRS.
C. Add about 5 mg to a mixture of 1 ml of acetic anhydride R and 3 ml of pyridine R. A red colour develops.
D. Dissolve 0.5 g in 5 ml of water R, neutralise using 1 M sodium hydroxide (about 7 ml), add 10 ml of calcium chloride solution R and heat to boiling. A white precipitate is formed.
E. Water (see Tests).

TESTS

Appearance of solution. The solution is clear (2.2.1) and not more intensely coloured than reference solution $\mathrm{Y}_{7}, \mathrm{BY}_{7}$ or GY_{7} (2.2.2, Method II).
Dissolve 2.0 g in water R and dilute to 10 ml with the same solvent.
Readily carbonisable substances. To 1.0 g in a cleaned test tube add 10 ml of sulphuric acid R and immediately heat the mixture in a water-bath at $90 \pm 1^{\circ} \mathrm{C}$ for 60 min . Cool rapidly immediately afterwards. The solution is not more intensely coloured than a mixture of 1 ml of red primary solution and 9 ml of yellow primary solution (2.2.2, Method I).
Oxalic acid: maximum 360 ppm , calculated as anhydrous oxalic acid.
Dissolve 0.80 g in 4 ml of water R. Add 3 ml of hydrochloric acid R and 1 g of zinc R in granules. Boil for 1 min .
Allow to stand for 2 min . Transfer the supernatant liquid to a test-tube containing 0.25 ml of a $10 \mathrm{~g} / 1$ solution of phenylhydrazine hydrochloride R and heat to boiling. Cool rapidly, transfer to a graduated cylinder and add an equal volume of hydrochloric acid R and 0.25 ml of a $50 \mathrm{~g} / \mathrm{l}$ solution of potassium ferricyanide R. Shake and allow to stand for 30 min . Any pink colour in the solution is not more intense than that in a standard prepared at the same time in the same manner using 4 ml of a $0.1 \mathrm{~g} / 1$ solution of oxalic acid R.
Sulphates (2.4.13): maximum 150 ppm .
Dissolve 2.0 g in distilled water R and dilute to 30 ml with the same solvent.
Aluminium (2.4.17): maximum 0.2 ppm , if intended for use in the manufacture of dialysis solutions.
Prescribed solution. Dissolve 20 g in 100 ml of water R and add 10 ml of acetate buffer solution pH 6.0 R .
Reference solution. Mix 2 ml of aluminium standard solution (2 ppm Al) $R, 10 \mathrm{ml}$ of acetate buffer solution pH 6.0 R and 98 ml of water R.
Blank solution. Mix 10 ml of acetate buffer solution $p H 6.0 R$ and 100 ml of water R.

Heavy metals (2.4.8): maximum 10 ppm .
Dissolve 5.0 g in several portions in 39 ml of dilute sodium hydroxide solution R and dilute to 50 ml with distilled water $R .12 \mathrm{ml}$ of the solution complies with test A. Prepare the reference solution using lead standard solution (1 ppm Pb) R.
Water (2.5.12): maximum 1.0 per cent, determined on 2.000 g .

Sulphated ash (2.4.14): maximum 0.1 per cent, determined on 1.0 g .
Bacterial endotoxins (2.6.14): less than $0.5 \mathrm{IU} / \mathrm{mg}$, if intended for use in the manufacture of parenteral dosage forms without a further appropriate procedure for the removal of bacterial endotoxins.

ASSAY

Dissolve 0.550 g in 50 ml of water R. Titrate with $1 M$ sodium hydroxide, using 0.5 ml of phenolphthalein solution R as indicator.
1 ml of 1 M sodium hydroxide is equivalent to 64.03 mg of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$.

LABELLING

The label states, where applicable, that the substance is intended for use in the manufacture of dialysis solutions.

01/2008:0456

corrected 6.0

CITRIC ACID MONOHYDRATE

Acidum citricum monohydricum

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{O}$
[5949-29-1]

DEFINITION

2-Hydroxypropane-1,2,3-tricarboxylic acid monohydrate.
Content: 99.5 per cent to 100.5 per cent (anhydrous substance).

CHARACTERS

Appearance: white or almost white, crystalline powder, colourless crystals or granules, efflorescent.
Solubility: very soluble in water, freely soluble in ethanol (96 per cent).

IDENTIFICATION

First identification: B, E.
Second identification: A, C, D, E.
A. Dissolve 1 g in 10 ml of water R. The solution is strongly acidic (2.2.4).
B. Infrared absorption spectrophotometry (2.2.24).

Preparation: dry the substance to be examined and the reference substance at $100-105{ }^{\circ} \mathrm{C}$ for 2 h .
Comparison: citric acid monohydrate CRS.
C. Add about 5 mg to a mixture of 1 ml of acetic anhydride R and 3 ml of pyridine R. A red colour develops.
D. Dissolve 0.5 g in 5 ml of water R, neutralise using 1 M sodium hydroxide (about 7 ml), add 10 ml of calcium chloride solution R and heat to boiling. A white precipitate is formed.
E. Water (see Tests).

