01/2008:0654 corrected 6.0

BECLOMETASONE DIPROPIONATE. ANHYDROUS

Beclometasoni dipropionas anhydricus

C28H37ClO7 [5534-09-8]

 $M_{r}\,521.1$

DEFINITION

9-Chloro-11\beta-hydroxy-16\beta-methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate.

Content: 96.0 per cent to 102.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white, crystalline powder.

Solubility: practically insoluble in water, freely soluble in acetone, sparingly soluble in ethanol (96 per cent).

IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24).

Comparison: anhydrous beclometasone dipropionate CRS.

B. Treat 25 mg by the oxygen-flask method (2.5.10). Use a mixture of 1 ml of 1 M sodium hudroxide and 20 ml of water R to absorb the combustion products. The solution Limits: gives reaction (a) of chlorides (2.3.1).

C. Loss on drying (see Tests).

TESTS

Specific optical rotation (2.2.7): + 108 to + 115 (dried substance).

Dissolve 0.100 g in *ethanol (96 per cent)* R and dilute to 10.0 ml with the same solvent.

Related substances. Liquid chromatography (2.2.29).

Test solution (a). Dissolve 50.0 mg of the substance to be examined in *acetonitrile* R and dilute to 50.0 ml with the same solvent.

Test solution (b). Dilute 1.0 ml of test solution (a) to 50.0 ml with acetonitrile R.

Reference solution (a). Dilute 5.0 ml of test solution (b) to 100.0 ml with acetonitrile R.

Reference solution (b). Dissolve 5 mg of beclometasone dipropionate for system suitability CRS (containing impurity D) in acetonitrile R and dilute to 5 ml with the same solvent.

Reference solution (c). Dissolve 5 mg of beclometasone dipropionate for peak identification CRS (containing impurities A, B, C, L and M) in *acetonitrile R* and dilute to 5 ml with the same solvent.

Reference solution (d). Dissolve 50.0 mg of *anhydrous* beclometasone dipropionate CRS in acetonitrile R and dilute to 50.0 ml with the same solvent. Dilute 1.0 ml to 50.0 ml with *acetonitrile R*.

- Column: - size: l = 0.25 m, $\emptyset = 4.0$ mm;
 - stationary phase: end-capped octadecylsilyl silica gel for chromatography R (5 μ m);
- temperature: 30 °C.
- *Mobile phase: acetonitrile R. water R* (45:55 *V/V*).

Flow rate: 1.5 ml/min.

Detection: spectrophotometer at 238 nm.

Injection: 20 µl of test solution (a) and reference solutions (a), (b) and (c).

Run time: 2.5 times the retention time of beclometasone dipropionate.

Identification of impurities: use the chromatogram supplied with beclometasone dipropionate for peak *identification CRS* and the chromatogram obtained with reference solution (c) to identify the peaks due to impurities A, B, C, L and M; use the chromatogram supplied with beclometasone dipropionate for system suitability CRS and the chromatogram obtained with reference solution (b) to identify the peak due to impurity D; if necessary, use the responses of impurities D and M detected at 284 nm to distinguish the 2 impurities: the response of impurity D decreases and that of impurity M increases.

Relative retention with reference to beclometasone dipropionate (retention time = about 29 min):

- impurity A = about 0.3; impurity B = about 0.6; impurity D = about 1.1; impurity M = about 1.1;
- impurity L = about 1.3; impurity C = about 1.6.

System suitability: reference solution (b):

- *peak-to-valley ratio*: minimum 2.0, where H_n = height above the baseline of the peak due to impurity D and $H_{\rm u}$ = height above the baseline of the lowest point of the curve separating this peak from the peak due to beclometasone dipropionate.

- correction factor: for the calculation of content, multiply the peak area of impurity D by 1.3;
- *impurities B*, *L*: for each impurity, not more than 8 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.8 per cent);
- *impurity M*: not more than 5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.5 per cent);
- *impurities A, D*: for each impurity, not more than 3 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.3 per cent);
- *impurity* C: not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.1 per cent);
- *unspecified impurities*: for each impurity, not more than the area of the principal peak in the chromatogram obtained with reference solution (a) (0.10 per cent);
- *total*: not more than 15 times the area of the principal peak in the chromatogram obtained with reference solution (a) (1.5 per cent);
- disregard limit: 0.5 times the area of the principal peak in the chromatogram obtained with reference solution (a) (0.05 per cent).

Loss on drying (2.2.32): maximum 0.5 per cent, determined on 1.000 g by drying in an oven at 105 °C for 3 h.

I

ASSAY

Liquid chromatography (2.2.29) as described in the test for related substances with the following modifications.

Mobile phase: water R, acetonitrile R (40:60 V/V).

Flow rate: 1.0 ml/min.

Injection: test solution (b) and reference solution (d). Calculate the percentage content of $C_{28}H_{37}ClO_7$.

STORAGE

Protected from light.

IMPURITIES

Specified impurities: A, B, C, D, L, M.

Other detectable impurities (the following substances would, if present at a sufficient level, be detected by one or other of the tests in the monograph. They are limited by the general acceptance criterion for other/unspecified impurities and/or by the general monograph *Substances for pharmaceutical use (2034)*. It is therefore not necessary to identify these impurities for demonstration of compliance. See also 5.10. Control of impurities in substances for pharmaceutical use): E, F, G, H, I, J, K, N, O, P, Q, R.

- A. R1 = R3 = H, R2 = Cl, R4 = CO- C_2H_5 : 9-chloro-11 β ,17dihydroxy-16 β -methyl-3,20-dioxopregna-1,4-dien-21-yl propanoate (beclometasone 21-propionate),
- B. R1 = H, R2 = Cl, R3 = CO-C₂H₅, R4 = CO-CH₃: 21-(acetyloxy)-9-chloro-11β-hydroxy-16β-methyl-3,20dioxopregna-1,4-dien-17-yl propanoate (beclometasone 21-acetate 17-propionate),
- C. R1 = H, R2 = Cl, R3 = CO-C₂H₅, R4 = CO-CH₂-CH₂-CH₃: 9-chloro-11β-hydroxy-16β-methyl-3,20-dioxo-17-(propanoyloxy)-pregna-1,4-dien-21-yl butanoate (beclometasone 21-butyrate 17-propionate),
- D. R1 = H, R2 = Br, R3 = R4 = CO- C_2H_5 : 9-bromo-11 β -hydroxy-16 β -methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate,
- E. R1 = R2 = Cl, R3 = R4 = CO- C_2H_5 : 6α ,9-dichloro-11 β -hydroxy-16 β -methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate,
- F. R1 = Br, R2 = Cl, R3 = R4 = CO- C_2H_5 : 6 α -bromo-9-chloro-11 β -hydroxy-16 β -methyl-3,20-dioxopregna-1,4-diene-17, 21-diyl dipropanoate,
- G. R1 = R3 = R4 = H, R2 = C1: 9-chloro-11 β ,17,21-trihydroxy-16 β -methylpregna-1,4-diene-3,20-dione (beclometasone),
- H. R1 = R4 = H, R2 = Cl, R3 = $CO-C_2H_5$: 9-chloro-11 β ,21dihydroxy-16 β -methyl-3,20-dioxopregna-1,4-dien-17-yl propanoate (beclometasone 17-propionate),

I. 16β-methyl-3,20-dioxopregna-1,4,9(11)-triene-17,21-diyl dipropanoate,

- J. R = CO-C₂H₅: 9,11 β -epoxy-16 β -methyl-3,20-dioxo-9 β -pregna-1,4-diene-17,21-diyl dipropanoate,
- R. R = H: 9,11β-epoxy-17,21-dihydroxy-16β-methyl-9βpregna-1,4-diene-3,20-dione,

K. (2'RS,4'R)-9-chloro-2'-ethyl-11β-hydroxy-16β-methyl-2'propoxyspiro[androsta-1,4-diene-17,4'-[1,3]dioxan]-3,5'dione (beclometasone propyl 17,21-orthopropionate),

L. 9-chloro-11β-hydroxy-16β-methyl-3,20-dioxopregn-4-ene-17,21-diyl dipropanoate,

M. 9-chloro-11β-hydroxy-16β-methyl-3,20-dioxopregna-4,6diene-17,21-diyl dipropanoate,

- N. R1 = Br, R2 = OH, R3 = Cl: 2-bromo-9-chloro-11βhydroxy-16β-methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate,
- O. R1 = H, R2 = R3 = Cl: 9,11β-dichloro-16β-methyl-3,20dioxopregna-1,4-diene-17,21-diyl dipropanoate,
- Q. R1 = R2 = R3 = H: 16β-methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate,

P. 9-chloro-11β-hydroxy-16β-methyl-3,6,20-trioxopregna-1,4diene-17,21-diyl dipropanoate.

> 01/2008:1709 corrected 6.0

BECLOMETASONE DIPROPIONATE MONOHYDRATE

Beclometasoni dipropionas monohydricus

 $C_{28}H_{37}ClO_7,H_2O$

*M*_r 539.1

DEFINITION

9-Chloro-11 β -hydroxy-16 β -methyl-3,20-dioxopregna-1,4-diene-17,21-diyl dipropanoate monohydrate.

Content: 97.0 per cent to 102.0 per cent (dried substance).

CHARACTERS

Appearance: white or almost white powder.

Solubility: practically insoluble in water, freely soluble in acetone, sparingly soluble in ethanol (96 per cent).

IDENTIFICATION

A. Infrared absorption spectrophotometry (2.2.24). Comparison: beclometasone dipropionate monohydrate CRS.

- B. Treat 25 mg by the oxygen-flask method (*2.5.10*). Use a mixture of 1 ml of *1 M sodium hydroxide* and 20 ml of *water R* to absorb the combustion products. The solution gives reaction (a) of chlorides (*2.3.1*).
- C. Loss on drying (see Tests).

TESTS

Specific optical rotation (2.2.7): + 108 to + 115 (dried substance).

Dissolve 0.100 g in *ethanol (96 per cent)* R and dilute to 10.0 ml with the same solvent.

Related substances. Liquid chromatography (2.2.29).

Test solution (a). Dissolve 50.0 mg of the substance to be examined in *acetonitrile* R and dilute to 50.0 ml with the same solvent.

Test solution (b). Dilute 1.0 ml of test solution (a) to 50.0 ml with *acetonitrile R*.

Reference solution (a). Dilute 5.0 ml of test solution (b) to 100.0 ml with *acetonitrile R*.

Reference solution (b). Dissolve 5 mg of *beclometasone dipropionate for system suitability CRS* (containing impurity D) in *acetonitrile R* and dilute to 5 ml with the same solvent.

Reference solution (c). Dissolve 5 mg of *beclometasone dipropionate for peak identification CRS* (containing impurities A, B, C, L and M) in *acetonitrile R* and dilute to 5 ml with the same solvent.

Reference solution (d). Dissolve 50.0 mg of beclometasone dipropionate anhydrous CRS in acetonitrile R and dilute to 50.0 ml with the same solvent. Dilute 1.0 ml to 50.0 ml with acetonitrile R.

Column:

- size: l = 0.25 m, $\emptyset = 4.0$ mm;
- stationary phase: end-capped octadecylsilyl silica gel for chromatography R (5 μm);
- temperature: 30 °C.

Mobile phase: acetonitrile R, water R (45:55 *V/V*).

Flow rate: 1.5 ml/min.

Detection: spectrophotometer at 238 nm.

Injection: 20 μ l of test solution (a) and reference solutions (a), (b) and (c).

Run time: 2.5 times the retention time of beclometasone dipropionate.

Identification of impurities: use the chromatogram supplied with *beclometasone dipropionate for peak identification CRS* and the chromatogram obtained with reference solution (c) to identify the peaks due to impurities A, B, C, L and M; use the chromatogram supplied with *beclometasone dipropionate for system suitability CRS* and the chromatogram obtained with reference solution (b) to identify the peak due to impurity D; if necessary, use the responses of impurities: the response of impurity D decreases and that of impurity M increases.

Relative retention with reference to beclometasone dipropionate (retention time = about 29 min): impurity A = about 0.3; impurity B = about 0.6; impurity D = about 1.1; impurity M = about 1.1;

impurity L = about 1.3; impurity C = about 1.6.

System suitability: reference solution (b):

- *peak-to-valley ratio*: minimum 2.0, where H_p = height above the baseline of the peak due to impurity D and H_v = height above the baseline of the lowest point of the curve separating this peak from the peak due to beclometasone dipropionate.