
EUROPEAN PHARMACOPOEIA 6.0 5.3. Statistical analysis

01/2008:50300

5.3. STATISTICAL ANALYSIS
OF RESULTS OF BIOLOGICAL
ASSAYS AND TESTS

1. INTRODUCTION
This chapter provides guidance for the design of bioassays
prescribed in the European Pharmacopoeia (Ph. Eur.)
and for analysis of their results. It is intended for use by
those whose primary training and responsibilities are not
in statistics, but who have responsibility for analysis or
interpretation of the results of these assays, often without
the help and advice of a statistician. The methods of
calculation described in this annex are not mandatory for
the bioassays which themselves constitute a mandatory part
of the Ph. Eur. Alternative methods can be used and may
be accepted by the competent authorities, provided that
they are supported by relevant data and justified during the
assay validation process. A wide range of computer software
is available and may be useful depending on the facilities
available to, and the expertise of, the analyst.
Professional advice should be obtained in situations where :
a comprehensive treatment of design and analysis suitable
for research or development of new products is required ; the
restrictions imposed on the assay design by this chapter are
not satisfied, for example particular laboratory constraints
may require customized assay designs, or equal numbers
of equally spaced doses may not be suitable ; analysis is
required for extended non-linear dose-response curves,
for example as may be encountered in immunoassays. An
outline of extended dose-response curve analysis for one
widely used model is nevertheless included in Section 3.4
and a simple example is given in Section 5.4.

1.1. GENERAL DESIGN AND PRECISION
Biological methods are described for the assay of certain
substances and preparations whose potency cannot be
adequately assured by chemical or physical analysis. The
principle applied wherever possible throughout these assays
is that of comparison with a standard preparation so as
to determine how much of the substance to be examined
produces the same biological effect as a given quantity, the
Unit, of the standard preparation. It is an essential condition
of such methods of biological assay that the tests on the
standard preparation and on the substance to be examined be
carried out at the same time and under identical conditions.
For certain assays (determination of virus titre for example)
the potency of the test sample is not expressed relative to a
standard. This type of assay is dealt with in Section 4.5.
Any estimate of potency derived from a biological assay
is subject to random error due to the inherent variability
of biological responses and calculations of error should be
made, if possible, from the results of each assay, even when
the official method of assay is used. Methods for the design
of assays and the calculation of their errors are, therefore,
described below. In every case, before a statistical method
is adopted, a preliminary test is to be carried out with an
appropriate number of assays, in order to ascertain the
applicability of this method.
The confidence interval for the potency gives an indication of
the precision with which the potency has been estimated in
the assay. It is calculated with due regard to the experimental
design and the sample size. The 95 per cent confidence

interval is usually chosen in biological assays. Mathematical
statistical methods are used to calculate these limits so as to
warrant the statement that there is a 95 per cent probability
that these limits include the true potency. Whether this
precision is acceptable to the European Pharmacopoeia
depends on the requirements set in the monograph for the
preparation concerned.
The terms “mean” and “standard deviation” are used here as
defined in most current textbooks of biometry.
The terms “stated potency” or “labelled potency”, “assigned
potency”, “assumed potency”, “potency ratio” and “estimated
potency” are used in this section to indicate the following
concepts :
— “stated potency” or “labelled potency” : in the case of

a formulated product a nominal value assigned from
knowledge of the potency of the bulk material ; in the
case of bulk material the potency estimated by the
manufacturer ;

— “assigned potency” : the potency of the standard
preparation ;

— “assumed potency” : the provisionally assigned potency
of a preparation to be examined which forms the basis of
calculating the doses that would be equipotent with the
doses to be used of the standard preparation ;

— “potency ratio” of an unknown preparation ; the ratio of
equipotent doses of the standard preparation and the
unknown preparation under the conditions of the assay ;

— “estimated potency” : the potency calculated from assay
data.

Section 9 (Glossary of symbols) is a tabulation of the more
important uses of symbols throughout this annex. Where
the text refers to a symbol not shown in this section or uses
a symbol to denote a different concept, this is defined in that
part of the text.

2. RANDOMISATION AND
INDEPENDENCE OF INDIVIDUAL
TREATMENTS
The allocation of the different treatments to different
experimental units (animals, tubes, etc.) should be made
by some strictly random process. Any other choice of
experimental conditions that is not deliberately allowed for
in the experimental design should also be made randomly.
Examples are the choice of positions for cages in a laboratory
and the order in which treatments are administered. In
particular, a group of animals receiving the same dose of
any preparation should not be treated together (at the
same time or in the same position) unless there is strong
evidence that the relevant source of variation (for example,
between times, or between positions) is negligible. Random
allocations may be obtained from computers by using the
built-in randomisation function. The analyst must check
whether a different series of numbers is produced every time
the function is started.
The preparations allocated to each experimental unit should
be as independent as possible. Within each experimental
group, the dilutions allocated to each treatment are not
normally divisions of the same dose, but should be prepared
individually. Without this precaution, the variability
inherent in the preparation will not be fully represented
in the experimental error variance. The result will be an
under-estimation of the residual error leading to:
1) an unjustified increase in the stringency of the test for the
analysis of variance (see Sections 3.2.3 and 3.2.4),
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2) an under-estimation of the true confidence limits for the
test, which, as shown in Section 3.2.5, are calculated from
the estimate of s2, the residual error mean square.

3. ASSAYS DEPENDING UPON
QUANTITATIVE RESPONSES

3.1. STATISTICAL MODELS

3.1.1. GENERAL PRINCIPLES
The bioassays included in the Ph. Eur. have been conceived
as “dilution assays”, which means that the unknown
preparation to be assayed is supposed to contain the same
active principle as the standard preparation, but in a different
ratio of active and inert components. In such a case the
unknown preparation may in theory be derived from the
standard preparation by dilution with inert components. To
check whether any particular assay may be regarded as a
dilution assay, it is necessary to compare the dose-response
relationships of the standard and unknown preparations. If
these dose-response relationships differ significantly, then
the theoretical dilution assay model is not valid. Significant
differences in the dose-response relationships for the
standard and unknown preparations may suggest that one of
the preparations contains, in addition to the active principle,
other components which are not inert but which influence
the measured responses.

To make the effect of dilution in the theoretical model
apparent, it is useful to transform the dose-response
relationship to a linear function on the widest possible range
of doses. 2 statistical models are of interest as models for
the bioassays prescribed : the parallel-line model and the
slope-ratio model.

The application of either is dependent on the fulfilment of
the following conditions :

1) the different treatments have been randomly assigned to
the experimental units,

2) the responses to each treatment are normally distributed,

3) the standard deviations of the responses within each
treatment group of both standard and unknown preparations
do not differ significantly from one another.

When an assay is being developed for use, the analyst has to
determine that the data collected from many assays meet
these theoretical conditions.

— Condition 1 can be fulfilled by an efficient use of Section 2.

— Condition 2 is an assumption which in practice is almost
always fulfilled. Minor deviations from this assumption
will in general not introduce serious flaws in the analysis
as long as several replicates per treatment are included.
In case of doubt, a test for deviations from normality (e.g.
the Shapiro-Wilk(1) test) may be performed.

— Condition 3 can be checked with a test for homogeneity
of variances (e.g. Bartlett’s(2) test, Cochran’s(3) test).
Inspection of graphical representations of the data can
also be very instructive for this purpose (see examples
in Section 5).

When conditions 2 and/or 3 are not met, a transformation
of the responses may bring a better fulfilment of these
conditions. Examples are ln y, , y2.

— Logarithmic transformation of the responses y to ln y
can be useful when the homogeneity of variances is not
satisfactory. It can also improve the normality if the
distribution is skewed to the right.

— The transformation of y to is useful when the
observations follow a Poisson distribution i.e. when they
are obtained by counting.

— The square transformation of y to y2 can be useful if, for
example, the dose is more likely to be proportional to
the area of an inhibition zone rather than the measured
diameter of that zone.

For some assays depending on quantitative responses,
such as immunoassays or cell-based in vitro assays, a large
number of doses is used. These doses give responses that
completely span the possible response range and produce an
extended non-linear dose-response curve. Such curves are
typical for all bioassays, but for many assays the use of a large
number of doses is not ethical (for example, in vivo assays)
or practical, and the aims of the assay may be achieved
with a limited number of doses. It is therefore customary to
restrict doses to that part of the dose-response range which is
linear under suitable transformation, so that the methods of
Sections 3.2 or 3.3 apply. However, in some cases analysis of
extended dose-response curves may be desirable. An outline
of one model which may be used for such analysis is given in
Section 3.4 and a simple example is shown in Section 5.4.

There is another category of assays in which the response
cannot be measured in each experimental unit, but in which
only the fraction of units responding to each treatment can
be counted. This category is dealt with in Section 4.

3.1.2. ROUTINE ASSAYS
When an assay is in routine use, it is seldom possible to check
systematically for conditions 1 to 3, because the limited
number of observations per assay is likely to influence the
sensitivity of the statistical tests. Fortunately, statisticians
have shown that, in symmetrical balanced assays, small
deviations from homogeneity of variance and normality do
not seriously affect the assay results. The applicability of
the statistical model needs to be questioned only if a series
of assays shows doubtful validity. It may then be necessary
to perform a new series of preliminary investigations as
discussed in Section 3.1.1.

2 other necessary conditions depend on the statistical model
to be used :

— for the parallel-line model :

4A) the relationship between the logarithm of the dose
and the response can be represented by a straight line
over the range of doses used,

5A) for any unknown preparation in the assay the straight
line is parallel to that for the standard.

— for the slope-ratio model :

4B) the relationship between the dose and the response
can be represented by a straight line for each preparation
in the assay over the range of doses used,

5B) for any unknown preparation in the assay the straight
line intersects the y-axis (at zero dose) at the same point
as the straight line of the standard preparation (i.e. the
response functions of all preparations in the assay must
have the same intercept as the response function of the
standard).

(1) Wilk, M.B. and Shapiro, S.S. (1968). The joint assessment of normality of several independent samples, Technometrics 10, 825-839.
(2) Bartlett, M.S. (1937). Properties of sufficiency and statistical tests, Proc. Roy. Soc. London, Series A 160, 280-282.
(3) Cochran, W.G. (1951). Testing a linear relation among variances, Biometrics 7, 17-32.
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Conditions 4A and 4B can be verified only in assays in which
at least 3 dilutions of each preparation have been tested. The
use of an assay with only 1 or 2 dilutions may be justified
when experience has shown that linearity and parallelism or
equal intercept are regularly fulfilled.

After having collected the results of an assay, and before
calculating the relative potency of each test sample, an
analysis of variance is performed, in order to check whether
conditions 4A and 5A (or 4B and 5B) are fulfilled. For
this, the total sum of squares is subdivided into a certain
number of sum of squares corresponding to each condition
which has to be fulfilled. The remaining sum of squares
represents the residual experimental error to which the
absence or existence of the relevant sources of variation can
be compared by a series of F-ratios.

When validity is established, the potency of each unknown
relative to the standard may be calculated and expressed as
a potency ratio or converted to some unit relevant to the
preparation under test e.g. an International Unit. Confidence
limits may also be estimated from each set of assay data.

Assays based on the parallel-line model are discussed in
Section 3.2 and those based on the slope-ratio model in
Section 3.3.

If any of the 5 conditions (1, 2, 3, 4A, 5A or 1, 2, 3, 4B,
5B) are not fulfilled, the methods of calculation described
here are invalid and an investigation of the assay technique
should be made.

The analyst should not adopt another transformation
unless it is shown that non-fulfilment of the requirements
is not incidental but is due to a systematic change in the
experimental conditions. In this case, testing as described in
Section 3.1.1 should be repeated before a new transformation
is adopted for the routine assays.

Excess numbers of invalid assays due to non-parallelism
or non-linearity, in a routine assay carried out to compare
similar materials, are likely to reflect assay designs with
inadequate replication. This inadequacy commonly results
from incomplete recognition of all sources of variability
affecting the assay, which can result in underestimation of
the residual error leading to large F-ratios.

It is not always feasible to take account of all possible
sources of variation within one single assay (e.g. day-to-day
variation). In such a case, the confidence intervals from
repeated assays on the same sample may not satisfactorily
overlap, and care should be exercised in the interpretation
of the individual confidence intervals. In order to obtain
a more reliable estimate of the confidence interval it may
be necessary to perform several independent assays and
to combine these into one single potency estimate and
confidence interval (see Section 6).

For the purpose of quality control of routine assays it is
recommended to keep record of the estimates of the slope
of regression and of the estimate of the residual error in
control charts.

— An exceptionally high residual error may indicate some
technical problem. This should be investigated and,
if it can be made evident that something went wrong
during the assay procedure, the assay should be repeated.
An unusually high residual error may also indicate
the presence of an occasional outlying or aberrant
observation. A response that is questionable because of
failure to comply with the procedure during the course
of an assay is rejected. If an aberrant value is discovered
after the responses have been recorded, but can then be
traced to assay irregularities, omission may be justified.
The arbitrary rejection or retention of an apparently

aberrant response can be a serious source of bias. In
general, the rejection of observations solely because a
test for outliers is significant, is discouraged.

— An exceptionally low residual error may once in a while
occur and cause the F-ratios to exceed the critical values.
In such a case it may be justified to replace the residual
error estimated from the individual assay, by an average
residual error based on historical data recorded in the
control charts.

3.1.3. CALCULATIONS AND RESTRICTIONS
According to general principles of good design the following
3 restrictions are normally imposed on the assay design.
They have advantages both for ease of computation and for
precision.
a) Each preparation in the assay must be tested with the
same number of dilutions.
b) In the parallel-line model, the ratio of adjacent doses must
be constant for all treatments in the assay ; in the slope-ratio
model, the interval between adjacent doses must be constant
for all treatments in the assay.
c) There must be an equal number of experimental units to
each treatment.
If a design is used which meets these restrictions, the
calculations are simple. The formulae are given in
Sections 3.2 and 3.3. It is recommended to use software
which has been developed for this special purpose. There
are several programs in existence which can easily deal
with all assay-designs described in the monographs. Not all
programs may use the same formulae and algorithms, but
they should all lead to the same results.
Assay designs not meeting the above mentioned restrictions
may be both possible and correct, but the necessary
formulae are too complicated to describe in this text. A brief
description of methods for calculation is given in Section 7.1.
These methods can also be used for the restricted designs, in
which case they are equivalent with the simple formulae.
The formulae for the restricted designs given in this text
may be used, for example, to create ad hoc programs in
a spreadsheet. The examples in Section 5 can be used to
clarify the statistics and to check whether such a program
gives correct results.

3.2. THE PARALLEL-LINE MODEL

3.2.1. INTRODUCTION
The parallel-line model is illustrated in Figure 3.2.1.-I. The
logarithm of the doses are represented on the horizontal axis
with the lowest concentration on the left and the highest
concentration on the right. The responses are indicated on
the vertical axis. The individual responses to each treatment
are indicated with black dots. The 2 lines are the calculated
ln(dose)-response relationship for the standard and the
unknown.
Note : the natural logarithm (ln or loge) is used throughout
this text. Wherever the term “antilogarithm” is used, the
quantity ex is meant. However, the Briggs or “common”
logarithm (log or log10) can equally well be used. In this case
the corresponding antilogarithm is 10x.
For a satisfactory assay the assumed potency of the test
sample must be close to the true potency. On the basis
of this assumed potency and the assigned potency of the
standard, equipotent dilutions (if feasible) are prepared, i.e.
corresponding doses of standard and unknown are expected
to give the same response. If no information on the assumed
potency is available, preliminary assays are carried out over
a wide range of doses to determine the range where the
curve is linear.
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Figure 3.2.1.-I. – The parallel-line model for a 3 + 3 assay
The more nearly correct the assumed potency of the
unknown, the closer the 2 lines will be together, for they
should give equal responses at equal doses. The horizontal
distance between the lines represents the “true” potency of
the unknown, relative to its assumed potency. The greater
the distance between the 2 lines, the poorer the assumed
potency of the unknown. If the line of the unknown is
situated to the right of the standard, the assumed potency
was overestimated, and the calculations will indicate
an estimated potency lower than the assumed potency.
Similarly, if the line of the unknown is situated to the left of
the standard, the assumed potency was underestimated, and
the calculations will indicate an estimated potency higher
than the assumed potency.

3.2.2. ASSAY DESIGN
The following considerations will be useful in optimising the
precision of the assay design :
1) the ratio between the slope and the residual error should
be as large as possible,
2) the range of doses should be as large as possible,
3) the lines should be as close together as possible, i.e. the
assumed potency should be a good estimate of the true
potency.
The allocation of experimental units (animals, tubes, etc.) to
different treatments may be made in various ways.

3.2.2.1. Completely randomised design
If the totality of experimental units appears to be reasonably
homogeneous with no indication that variability in response
will be smaller within certain recognisable sub-groups, the
allocation of the units to the different treatments should be
made randomly.
If units in sub-groups such as physical positions or
experimental days are likely to be more homogeneous than
the totality of the units, the precision of the assay may
be increased by introducing one or more restrictions into
the design. A careful distribution of the units over these
restrictions permits irrelevant sources of variation to be
eliminated.

3.2.2.2. Randomised block design
In this design it is possible to segregate an identifiable source
of variation, such as the sensitivity variation between litters
of experimental animals or the variation between Petri dishes
in a diffusion microbiological assay. The design requires
that every treatment be applied an equal number of times in

every block (litter or Petri dish) and is suitable only when the
block is large enough to accommodate all treatments once.
This is illustrated in Section 5.1.3. It is also possible to use a
randomised design with repetitions. The treatments should
be allocated randomly within each block. An algorithm to
obtain random permutations is given in Section 8.5.

3.2.2.3. Latin square design
This design is appropriate when the response may be
affected by two different sources of variation each of which
can assume k different levels or positions. For example, in a
plate assay of an antibiotic the treatments may be arranged
in a k × k array on a large plate, each treatment occurring
once in each row and each column. The design is suitable
when the number of rows, the number of columns and the
number of treatments are equal. Responses are recorded in
a square format known as a Latin square. Variations due to
differences in response among the k rows and among the
k columns may be segregated, thus reducing the error. An
example of a Latin square design is given in Section 5.1.2.
An algorithm to obtain Latin squares is given in Section 8.6.
More complex designs in which one or more treatments are
replicated within the Latin square may be useful in some
circumstances. The simplified formulae given in this Chapter
are not appropriate for such designs, and professional advice
should be obtained.

3.2.2.4. Cross-over design
This design is useful when the experiment can be sub-divided
into blocks but it is possible to apply only 2 treatments to
each block. For example, a block may be a single unit that
can be tested on 2 occasions. The design is intended to
increase precision by eliminating the effects of differences
between units while balancing the effect of any difference
between general levels of response at the 2 occasions. If
2 doses of a standard and of an unknown preparation are
tested, this is known as a twin cross-over test.

The experiment is divided into 2 parts separated by a suitable
time interval. Units are divided into 4 groups and each group
receives 1 of the 4 treatments in the first part of the test.
Units that received one preparation in the first part of the
test receive the other preparation on the second occasion,
and units receiving small doses in one part of the test receive
large doses in the other. The arrangement of doses is shown
in Table 3.2.2.-I. An example can be found in Section 5.1.5.

Table 3.2.2.-I. — Arrangement of doses in cross-over design

Group of units Time I Time II

1 S1 T2

2 S2 T1

3 T1 S2

4 T2 S1

3.2.3. ANALYSIS OF VARIANCE
This section gives formulae that are required to carry out the
analysis of variance and will be more easily understood by
reference to the worked examples in Section 5.1. Reference
should also be made to the glossary of symbols (Section 9).

The formulae are appropriate for symmetrical assays where
one or more preparations to be examined (T, U, etc.) are
compared with a standard preparation (S). It is stressed
that the formulae can only be used if the doses are equally
spaced, if equal numbers of treatments per preparation are
applied, and each treatment is applied an equal number of
times. It should not be attempted to use the formulae in any
other situation.
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Apart from some adjustments to the error term, the basic
analysis of data derived from an assay is the same for
completely randomised, randomised block and Latin square
designs. The formulae for cross-over tests do not entirely fit
this scheme and these are incorporated into Example 5.1.5.
Having considered the points discussed in Section 3.1 and
transformed the responses, if necessary, the values should
be averaged over each treatment and each preparation, as
shown in Table 3.2.3.-I. The linear contrasts, which relate
to the slopes of the ln(dose)-response lines, should also
be formed. 3 additional formulae, which are necessary for

the construction of the analysis of variance, are shown in
Table 3.2.3.-II.
The total variation in response caused by the different
treatments is now partitioned as shown in Table 3.2.3.-III
the sums of squares being derived from the values obtained
in Tables 3.2.3.-I and 3.2.3.-II. The sum of squares due to
non-linearity can only be calculated if at least 3 doses per
preparation are included in the assay.
The residual error of the assay is obtained by subtracting the
variations allowed for in the design from the total variation in
response (Table 3.2.3.-IV). In this table represents the mean

Table 3.2.3.-I. — Formulae for parallel-line assays with d doses of each preparation

Standard
(S)

1st Test sample
(T)

2nd Test sample
(U, etc.)

Mean response lowest
dose S1 T1 U1

Mean response 2nd dose S2 T2 U2

... ... ... ...

Mean response highest
dose Sd Td Ud

Total preparation

Linear contrast

Table 3.2.3.-II. — Additional formulae for the construction of the analysis of variance

Table 3.2.3.-III. — Formulae to calculate the sum of squares and degrees of freedom

Source of variation Degrees of freedom (f) Sum of squares

Preparations

Linear regression

Non-parallelism

Non-linearity(*)

Treatments

(*) Not calculated for two-dose assays

Table 3.2.3.-IV. — Estimation of the residual error

Source of variation Degrees of freedom Sum of squares

Blocks (rows)(*)

Columns(**)

Completely randomised

Randomised blockResidual error(***)

Latin square

Total

For Latin square designs, these formulae are only applicable if n = hd
(*) Not calculated for completely randomised designs
(**) Only calculated for Latin square designs
(***) Depends on the type of design
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of all responses recorded in the assay. It should be noted
that for a Latin square the number of replicate responses (n)
is equal to the number of rows, columns or treatments (dh).
The analysis of variance is now completed as follows. Each
sum of squares is divided by the corresponding number of
degrees of freedom to give mean squares. The mean square
for each variable to be tested is now expressed as a ratio to
the residual error (s2) and the significance of these values
(known as F-ratios) are assessed by use of Table 8.1 or a
suitable sub-routine of a computer program.

3.2.4. TESTS OF VALIDITY
Assay results are said to be “statistically valid” if the outcome
of the analysis of variance is as follows.
1) The linear regression term is significant, i.e. the calculated
probability is less than 0.05. If this criterion is not met, it is
not possible to calculate 95 per cent confidence limits.
2) The term for non-parallelism is not significant, i.e. the
calculated probability is not less than 0.05. This indicates
that condition 5A, Section 3.1, is satisfied ;
3) The term for non-linearity is not significant, i.e. the
calculated probability is not less than 0.05. This indicates
that condition 4A, Section 3.1, is satisfied.
A significant deviation from parallelism in a multiple
assay may be due to the inclusion in the assay-design of a
preparation to be examined that gives an ln(dose)-response
line with a slope different from those for the other
preparations. Instead of declaring the whole assay invalid,
it may then be decided to eliminate all data relating to that
preparation and to restart the analysis from the beginning.
When statistical validity is established, potencies and
confidence limits may be estimated by the methods described
in the next section.

3.2.5. ESTIMATION OF POTENCY AND CONFIDENCE
LIMITS
If I is the ln of the ratio between adjacent doses of any
preparation, the common slope (b) for assays with d doses
of each preparation is obtained from:

(3.2.5.-1)

and the logarithm of the potency ratio of a test preparation,
for example T, is :

(3.2.5.-2)

The calculated potency is an estimate of the “true potency”
of each unknown. Confidence limits may be calculated as
the antilogarithms of :

(3.2.5.-3)

The value of t may be obtained from Table 8.2 for p = 0.05
and degrees of freedom equal to the number of the degrees
of freedom of the residual error. The estimated potency (RT)
and associated confidence limits are obtained by multiplying
the values obtained by AT after antilogarithms have been
taken. If the stock solutions are not exactly equipotent on
the basis of assigned and assumed potencies, a correction
factor is necessary (See Examples 5.1.2 and 5.1.3).

3.2.6. MISSING VALUES
In a balanced assay, an accident totally unconnected with
the applied treatments may lead to the loss of one or more
responses, for example because an animal dies. If it is

considered that the accident is in no way connected with
the composition of the preparation administered, the exact
calculations can still be performed but the formulae are
necessarily more complicated and can only be given within
the framework of general linear models (see Section 7.1).
However, there exists an approximate method which keeps
the simplicity of the balanced design by replacing the missing
response by a calculated value. The loss of information is
taken into account by diminishing the degrees of freedom
for the total sum of squares and for the residual error by
the number of missing values and using one of the formulae
below for the missing values. It should be borne in mind
that this is only an approximate method, and that the exact
method is to be preferred.

If more than one observation is missing, the same formulae
can be used. The procedure is to make a rough guess at all
the missing values except one, and to use the proper formula
for this one, using all the remaining values including the
rough guesses. Fill in the calculated value. Continue by
similarly calculating a value for the first rough guess. After
calculating all the missing values in this way the whole cycle
is repeated from the beginning, each calculation using the
most recent guessed or calculated value for every response
to which the formula is being applied. This continues until
2 consecutive cycles give the same values ; convergence is
usually rapid.

Provided that the number of values replaced is small relative
to the total number of observations in the full experiment
(say less than 5 per cent), the approximation implied in
this replacement and reduction of degrees of freedom by
the number of missing values so replaced is usually fairly
satisfactory. The analysis should be interpreted with great
care however, especially if there is a preponderance of
missing values in one treatment or block, and a biometrician
should be consulted if any unusual features are encountered.
Replacing missing values in a test without replication is a
particularly delicate operation.

Completely randomised design

In a completely randomised assay the missing value can be
replaced by the arithmetic mean of the other responses to
the same treatment.

Randomised block design

The missing value is obtained using the equation :

(3.2.6.-1)

where B′ is the sum of the responses in the block containing
the missing value, T′ the corresponding treatment total and
G′ is the sum of all responses recorded in the assay.

Latin square design

The missing value y′ is obtained from:

(3.2.6.-2)

where B′ and C′ are the sums of the responses in the row
and column containing the missing value. In this case k = n.

Cross-over design

If an accident leading to loss of values occurs in a cross-over
design, a book on statistics should be consulted (e.g. D.J.
Finney, see Section 10), because the appropriate formulae
depend upon the particular treatment combinations.
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3.3. THE SLOPE-RATIO MODEL

3.3.1. INTRODUCTION
This model is suitable, for example, for some microbiological
assays when the independent variable is the concentration of
an essential growth factor below the optimal concentration
of the medium. The slope-ratio model is illustrated in
Figure 3.3.1.-I.

Figure 3.3.1.-I. – The slope-ratio model for a 2 × 3 + 1 assay
The doses are represented on the horizontal axis with zero
concentration on the left and the highest concentration on
the right. The responses are indicated on the vertical axis.
The individual responses to each treatment are indicated
with black dots. The 2 lines are the calculated dose-response
relationship for the standard and the unknown under the
assumption that they intersect each other at zero-dose.
Unlike the parallel-line model, the doses are not transformed
to logarithms.
Just as in the case of an assay based on the parallel-line
model, it is important that the assumed potency is close to
the true potency, and to prepare equipotent dilutions of the
test preparations and the standard (if feasible). The more
nearly correct the assumed potency, the closer the 2 lines
will be together. The ratio of the slopes represents the “true”
potency of the unknown, relative to its assumed potency. If
the slope of the unknown preparation is steeper than that
of the standard, the potency was underestimated and the
calculations will indicate an estimated potency higher than
the assumed potency. Similarly, if the slope of the unknown
is less steep than that of the standard, the potency was
overestimated and the calculations will result in an estimated
potency lower than the assumed potency.
In setting up an experiment, all responses should be
examined for the fulfilment of the conditions 1, 2 and 3 in
Section 3.1. The analysis of variance to be performed in
routine is described in Section 3.3.3 so that compliance with
conditions 4B and 5B of Section 3.1 may be examined.

3.3.2. ASSAY DESIGN
The use of the statistical analysis presented below imposes
the following restrictions on the assay :
a) the standard and the test preparations must be tested with
the same number of equally spaced dilutions,
b) an extra group of experimental units receiving no
treatment may be tested (the blanks),
c) there must be an equal number of experimental units to
each treatment.

As already remarked in Section 3.1.3, assay designs not
meeting these restrictions may be both possible and correct,
but the simple statistical analyses presented here are no
longer applicable and either expert advice should be sought
or suitable software should be used.
A design with 2 doses per preparation and 1 blank, the
“common zero (2h + 1)-design”, is usually preferred, since it
gives the highest precision combined with the possibility
to check validity within the constraints mentioned above.
However, a linear relationship cannot always be assumed to
be valid down to zero-dose. With a slight loss of precision
a design without blanks may be adopted. In this case
3 doses per preparation, the “common zero (3h)-design”,
are preferred to 2 doses per preparation. The doses are thus
given as follows :
1) the standard is given in a high dose, near to but not
exceeding the highest dose giving a mean response on the
straight portion of the dose-response line,
2) the other doses are uniformly spaced between the highest
dose and zero dose,
3) the test preparations are given in corresponding doses
based on the assumed potency of the material.
A completely randomised, a randomised block or a
Latin square design may be used, such as described in
Section 3.2.2. The use of any of these designs necessitates
an adjustment to the error sum of squares as described for
assays based on the parallel-line model. The analysis of an
assay of one or more test preparations against a standard is
described below.

3.3.3. ANALYSIS OF VARIANCE

3.3.3.1. The (hd + 1)-design
The responses are verified as described in Section 3.1
and, if necessary, transformed. The responses are then
averaged over each treatment and each preparation as
shown in Table 3.3.3.1.-I. Additionally, the mean response
for blanks (B) is calculated.
The sums of squares in the analysis of variance are calculated
as shown in Tables 3.3.3.1.-I to 3.3.3.1.-III. The sum of
squares due to non-linearity can only be calculated if at least
3 doses of each preparation have been included in the assay.
The residual error is obtained by subtracting the variations
allowed for in the design from the total variation in response
(Table 3.3.3.1.-IV).
The analysis of variance is now completed as follows. Each
sum of squares is divided by the corresponding number of
degrees of freedom to give mean squares. The mean square
for each variable to be tested is now expressed as a ratio to
the residual error (s2) and the significance of these values
(known as F-ratios) are assessed by use of Table 8.1 or a
suitable sub-routine of a computer program.

3.3.3.2. The (hd)-design
The formulae are basically the same as those for the
(hd + 1)-design, but there are some slight differences.
— B is discarded from all formulae.

—

— SSblank is removed from the analysis of variance.
— The number of degrees of freedom for treatments becomes

hd − 1.
— The number of degrees of freedom of the residual error

and the total variance is calculated as described for the
parallel-line model (see Table 3.2.3.-IV).

Validity of the assay, potency and confidence interval are
found as described in Sections 3.3.4 and 3.3.5.
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Table 3.3.3.1.-I. — Formulae for slope-ratio assays with d doses of each preparation and a blank

Standard
(S)

1st Test sample
(T)

2nd Test sample
(U, etc.)

Mean response lowest dose S1 T1 U1

Mean response 2nd dose S2 T2 U2

… … … …

Mean response highest dose Sd Td Ud

Total preparation

Linear product

Intercept value

Slope value

Treatment value

Non-linearity(*)

(*) Not calculated for two-dose assays

Table 3.3.3.1.-II. — Additional formulae for the construction of the analysis of variance

Table 3.3.3.1.-III. — Formulae to calculate the sum of squares and degrees of freedom

Source of variation Degrees of freedom (f) Sum of squares

Regression

Blanks

Intersection

Non-linearity(*)

Treatments

(*) Not calculated for two-dose assays

3.3.4. TESTS OF VALIDITY
Assay results are said to be “statistically valid” if the outcome
of the analysis of variance is as follows :
1) the variation due to blanks in (hd + 1)-designs is not
significant, i.e. the calculated probability is not smaller than
0.05. This indicates that the responses of the blanks do not
significantly differ from the common intercept and the linear
relationship is valid down to zero dose ;
2) the variation due to intersection is not significant, i.e. the
calculated probability is not less than 0.05. This indicates
that condition 5B, Section 3.1 is satisfied ;
3) in assays including at least 3 doses per preparation, the
variation due to non-linearity is not significant, i.e. the
calculated probability is not less than 0.05. This indicates
that condition 4B, Section 3.1 is satisfied.
A significant variation due to blanks indicates that the
hypothesis of linearity is not valid near zero dose. If this is
likely to be systematic rather than incidental for the type of
assay, the (hd-design) is more appropriate. Any response to
blanks should then be disregarded.
When these tests indicate that the assay is valid, the potency
is calculated with its confidence limits as described in
Section 3.3.5.

3.3.5. ESTIMATION OF POTENCY AND CONFIDENCE
LIMITS

3.3.5.1. The (hd + 1)-design
The common intersection a′ of the preparations can be
calculated from:

(3.3.5.1.-1)

The slope of the standard, and similarly for each of the other
preparations, is calculated from:

(3.3.5.1.-2)

The potency ratio of each of the test preparations can now
be calculated from:

(3.3.5.1.-3)

which has to be multiplied by AT, the assumed potency of
the test preparation, in order to find the estimated potency
RT. If the step between adjacent doses was not identical
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Table 3.3.3.1.-IV. — Estimation of the residual error

Source of variation Degrees of freedom Sum of squares

Blocks (rows)(*)

Columns(**)

Completely
randomised

Randomised blockResidual error(***)

Latin square

Total

For Latin square designs, these formulae are only applicable if n = hd
(*) Not calculated for completely randomised designs
(**) Only calculated for Latin square designs
(***) Depends on the type of design

for the standard and the test preparation, the potency has
to be multiplied by IS/IT. Note that, unlike the parallel-line
analysis, no antilogarithms are calculated.

The confidence interval for RT′ is calculated from:

(3.3.5.1.-4)

V1 are V2 are related to the variance and covariance of the
numerator and denominator of RT. They can be obtained
from:

(3.3.5.1.-5)

(3.3.5.1.-6)

The confidence limits are multiplied by AT, and if necessary
by IS/IT.

3.3.5.2. The (hd)-design

The formulae are the same as for the (hd + 1)-design, with
the following modifications :

(3.3.5.2.-1)

(3.3.5.2.-2)

(3.3.5.2.-3)

3.4. EXTENDED SIGMOID DOSE-RESPONSE CURVES

This model is suitable, for example, for some immunoassays
when analysis is required of extended sigmoid dose-response
curves. This model is illustrated in Figure 3.4.-I.

Figure 3.4.-I. – The four-parameter logistic curve model
The logarithms of the doses are represented on the
horizontal axis with the lowest concentration on the left and
the highest concentration on the right. The responses are
indicated on the vertical axis. The individual responses to
each treatment are indicated with black dots. The 2 curves
are the calculated ln(dose)-response relationship for the
standard and the test preparation.
The general shape of the curves can usually be described by
a logistic function but other shapes are also possible. Each
curve can be characterised by 4 parameters : The upper
asymptote (α), the lower asymptote (δ), the slope-factor (β),
and the horizontal location (γ). This model is therefore
often referred to as a four-parameter model. A mathematical
representation of the ln(dose)-response curve is :

For a valid assay it is necessary that the curves of the standard
and the test preparations have the same slope-factor, and the
same maximum and minimum response level at the extreme
parts. Only the horizontal location (γ) of the curves may
be different. The horizontal distance between the curves is
related to the “true” potency of the unknown. If the assay
is used routinely, it may be sufficient to test the condition
of equal upper and lower response levels when the assay is
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developed, and then to retest this condition directly only at
suitable intervals or when there are changes in materials or
assay conditions.

The maximum-likelihood estimates of the parameters and
their confidence intervals can be obtained with suitable
computer programs. These computer programs may include
some statistical tests reflecting validity. For example, if the
maximum likelihood estimation shows significant deviations
from the fitted model under the assumed conditions of equal
upper and lower asymptotes and slopes, then one or all of
these conditions may not be satisfied.

The logistic model raises a number of statistical problems
which may require different solutions for different types of
assays, and no simple summary is possible. A wide variety of
possible approaches is described in the relevant literature.
Professional advice is therefore recommended for this type
of analysis. A simple example is nevertheless included in
Section 5.4 to illustrate a “possible” way to analyse the data
presented. A short discussion of alternative approaches and
other statistical considerations is given in Section 7.5.

If professional advice or suitable software is not available,
alternative approaches are possible : 1) if “reasonable”
estimates of the upper limit (α) and lower limit (δ) are
available, select for all preparations the doses with mean
of the responses (u) falling between approximately 20 per
cent and 80 per cent of the limits, transform responses of

the selected doses to and use the parallel

line model (Section 3.2) for the analysis ; 2) select a range of
doses for which the responses (u) or suitably transformed
responses, for example ln(u), are approximately linear when
plotted against ln(dose) ; the parallel line model (Section 3.2)
may then be used for analysis.

4. ASSAYS DEPENDING UPON
QUANTAL RESPONSES

4.1. INTRODUCTION

In certain assays it is impossible or excessively laborious
to measure the effect on each experimental unit on a
quantitative scale. Instead, an effect such as death or
hypoglycaemic symptoms may be observed as either
occurring or not occurring in each unit, and the result
depends on the number of units in which it occurs. Such
assays are called quantal or all-or-none.

The situation is very similar to that described for quantitative
assays in Section 3.1, but in place of n separate responses to
each treatment a single value is recorded, i.e. the fraction
of units in each treatment group showing a response.
When these fractions are plotted against the logarithms
of the doses the resulting curve will tend to be sigmoid
(S-shaped) rather than linear. A mathematical function that
represents this sigmoid curvature is used to estimate the
dose-response curve. The most commonly used function is
the cumulative normal distribution function. This function
has some theoretical merit, and is perhaps the best choice
if the response is a reflection of the tolerance of the units.
If the response is more likely to depend upon a process of
growth, the logistic distribution model is preferred, although
the difference in outcome between the 2 models is usually
very small.

The maximum likelihood estimators of the slope and location
of the curves can be found only by applying an iterative
procedure. There are many procedures which lead to the
same outcome, but they differ in efficiency due to the speed
of convergence. One of the most rapid methods is direct
optimisation of the maximum-likelihood function (see
Section 7.1), which can easily be performed with computer
programs having a built-in procedure for this purpose.
Unfortunately, most of these procedures do not yield an
estimate of the confidence interval, and the technique to
obtain it is too complicated to describe here. The technique
described below is not the most rapid, but has been chosen
for its simplicity compared to the alternatives. It can be
used for assays in which one or more test preparations
are compared to a standard. Furthermore, the following
conditions must be fulfilled :

1) the relationship between the logarithm of the dose and
the response can be represented by a cumulative normal
distribution curve,

2) the curves for the standard and the test preparation are
parallel, i.e. they are identically shaped and may only differ
in their horizontal location,

3) in theory, there is no natural response to extremely low
doses and no natural non-response to extremely high doses.

4.2. THE PROBIT METHOD

The sigmoid curve can be made linear by replacing each
response, i.e. the fraction of positive responses per group, by
the corresponding value of the cumulative standard normal
distribution. This value, often referred to as “normit”, ranges
theoretically from −∞ to + ∞. In the past it was proposed
to add 5 to each normit to obtain “probits”. This facilitated
the hand-performed calculations because negative values
were avoided. With the arrival of computers the need to
add 5 to the normits has disappeared. The term “normit
method” would therefore be better for the method described
below. However, since the term “probit analysis” is so widely
spread, the term will, for historical reasons, be maintained in
this text.

Once the responses have been linearised, it should be
possible to apply the parallel-line analysis as described
in Section 3.2. Unfortunately, the validity condition of
homogeneity of variance for each dose is not fulfilled. The
variance is minimal at normit = 0 and increases for positive
and negative values of the normit. It is therefore necessary
to give more weight to responses in the middle part of the
curve, and less weight to the more extreme parts of the curve.
This method, the analysis of variance, and the estimation of
the potency and confidence interval are described below.

4.2.1. TABULATION OF THE RESULTS
Table 4.2.1.-I is used to enter the data into the columns
indicated by numbers :

(1) the dose of the standard or the test preparation,

(2) the number n of units submitted to that treatment,

(3) the number of units r giving a positive response to the
treatment,

(4) the logarithm x of the dose,

(5) the fraction p = r/n of positive responses per group.

The first cycle starts here.

(6) column Y is filled with zeros at the first iteration,

(7) the corresponding value = (Y) of the cumulative
standard normal distribution function (see also Table 8.4).
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The columns (8) to (10) are calculated with the following
formulae :

(8) (4.2.1.-1)

(9) (4.2.1.-2)

(10) (4.2.1.-3)

The columns (11) to (15) can easily be calculated from
columns (4), (9) and (10) as wx, wy, wx2, wy2 and wxy
respectively, and the sum ( ) of each of the columns (10) to
(15) is calculated separately for each of the preparations.
The sums calculated in Table 4.2.1.-I are transferred to
columns (1) to (6) of Table 4.2.1.-II and 6 additional columns
(7) to (12) are calculated as follows :

(7) (4.2.1.-4)

(8) (4.2.1.-5)

(9) (4.2.1.-6)

(10) (4.2.1.-7)

(11) (4.2.1.-8)

The common slope b can now be obtained as :

(4.2.1.-9)

and the intercept a of the standard, and similarly for the test
preparations is obtained as :

(12) (4.2.1.-10)

Column (6) of the first working table can now be replaced
by Y = a + bx and the cycle is repeated until the difference
between 2 cycles has become small (e.g. the maximum
difference of Y between 2 consecutive cycles is smaller
than 10−8).

4.2.2. TESTS OF VALIDITY
Before calculating the potencies and confidence intervals,
validity of the assay must be assessed. If at least 3 doses for
each preparation have been included, the deviations from
linearity can be measured as follows : add a 13th column to
Table 4.2.1.-II and fill it with :

(4.2.2.-1)

The column total is a measure of deviations from linearity and
is approximately χ2 distributed with degrees of freedom equal
to N −2h. Significance of this value may be assessed with
the aid of Table 8.3 or a suitable sub-routine in a computer
program. If the value is significant at the 0.05 probability
level, the assay must probably be rejected (see Section 4.2.4).

When the above test gives no indication of significant
deviations from linear regression, the deviations from
parallelism are tested at the 0.05 significance level with :

(4.2.2.-2)

with h − 1 degrees of freedom.

4.2.3. ESTIMATION OF POTENCY AND CONFIDENCE
LIMITS
When there are no indications for a significant departure
from parallelism and linearity the ln(potency ratio) M′T is
calculated as :

(4.2.3.-1)

Table 4.2.1.-I. — First working table

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

dose n r x p Y Z y w wx wy wx2 wy2 wxy

S . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

= = = = = =

T . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

= = = = = =

etc.

Table 4.2.1.-II. — Second working table

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

w wx wy wx2 wy2 wxy Sxx Sxy Syy
a

S . . . . . . . . . . . .

T . . . . . . . . . . . .

etc. . . . . . . . . . . . .

= =
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and the antilogarithm is taken. Now let t = 1.96 and s = 1.
Confidence limits are calculated as the antilogarithms of :

(4.2.3.-2)

4.2.4. INVALID ASSAYS
If the test for deviations from linearity described in
Section 4.2.2 is significant, the assay should normally be
rejected. If there are reasons to retain the assay, the formulae
are slightly modified. t becomes the t-value (p = 0.05) with
the same number of degrees of freedom as used in the check
for linearity and s2 becomes the χ2 value divided by the same
number of degrees of freedom (and thus typically is greater
than 1).

The test for parallelism is also slightly modified. The χ2

value for non-parallelism is divided by its number of degrees
of freedom. The resulting value is divided by s2 calculated
above to obtain an F-ratio with h - 1 and N - 2h degrees of
freedom, which is evaluated in the usual way at the 0.05
significance level.

4.3. THE LOGIT METHOD

As indicated in Section 4.1 the logit method may sometimes
be more appropriate. The name of the method is derived
from the logit function which is the inverse of the logistic
distribution. The procedure is similar to that described for
the probit method with the following modifications in the
formulae for and Z.

(4.3.-1)

(4.3.-2)

4.4. OTHER SHAPES OF THE CURVE

The probit and logit method are almost always adequate for
the analysis of quantal responses called for in the European
Pharmacopoeia. However, if it can be made evident that the
ln(dose)-response curve has another shape than the 2 curves
described above, another curve may be adopted. Z is then
taken to be the first derivative of .

For example, if it can be shown that the curve is not symmetric,
the Gompertz distribution may be appropriate (the gompit
method) in which case .

4.5. THE MEDIAN EFFECTIVE DOSE

In some types of assay it is desirable to determine a median
effective dose which is the dose that produces a response in
50 per cent of the units. The probit method can be used to
determine this median effective dose (ED50), but since there
is no need to express this dose relative to a standard, the
formulae are slightly different.

Note : a standard can optionally be included in order to
validate the assay. Usually the assay is considered valid if
the calculated ED50 of the standard is close enough to the
assigned ED50. What “close enough” in this context means
depends on the requirements specified in the monograph.

The tabulation of the responses to the test samples, and
optionally a standard, is as described in Section 4.2.1. The
test for linearity is as described in Section 4.2.2. A test for

parallelism is not necessary for this type of assay. The ED50
of test sample T, and similarly for the other samples, is
obtained as described in Section 4.2.3, with the following
modifications in formulae 4.2.3.-1 and 4.2.3.-2).

(4.5.-1)

(4.5.-2)

where and C is left unchanged

5. EXAMPLES
This section consists of worked examples illustrating the
application of the formulae. The examples have been
selected primarily to illustrate the statistical method of
calculation. They are not intended to reflect the most
suitable method of assay, if alternatives are permitted in the
individual monographs. To increase their value as program
checks, more decimal places are given than would usually be
necessary. It should also be noted that other, but equivalent
methods of calculation exist. These methods should lead to
exactly the same final results as those given in the examples.

5.1. PARALLEL-LINE MODEL

5.1.1. TWO-DOSE MULTIPLE ASSAY WITH COMPLETELY
RANDOMISED DESIGN
An assay of corticotrophin by subcutaneous injection in
rats

The standard preparation is administered at 0.25 and
1.0 units per 100 g of body mass. 2 preparations to be
examined are both assumed to have a potency of 1 unit per
milligram and they are administered in the same quantities
as the standard. The individual responses and means per
treatment are given in Table 5.1.1.-I. A graphical presentation
(Figure 5.1.1.-I) gives no rise to doubt the homogeneity of
variance and normality of the data, but suggests problems
with parallelism for preparation U.

Table 5.1.1.-I. — Response metameter y : mass of ascorbic
acid (mg) per 100 g of adrenal gland

Standard S Preparation T Preparation U

S1 S2 T1 T2 U1 U2

300 289 310 230 250 236

310 221 290 210 268 213

330 267 360 280 273 283

290 236 341 261 240 269

364 250 321 241 307 251

328 231 370 290 270 294

390 229 303 223 317 223

360 269 334 254 312 250

342 233 295 216 320 216

306 259 315 235 265 265

Mean 332.0 248.4 323.9 244.0 282.2 250.0
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Figure 5.1.1.-I.

The formulae in Tables 3.2.3.-I and 3.2.3.-II lead to :

PS
= 580.4 LS

= −41.8

PT
= 567.9 LT

= −39.95

PU
= 532.2 LU

= −16.1

HP = = 5 HL = = 20

The analysis of variance can now be completed with the
formulae in Tables 3.2.3-III and 3.2.3.-IV. This is shown in
Table 5.1.1.-II.

Table 5.1.1.-II. — Analysis of variance

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square F-ratio

Proba-
bility

Preparations 2 6256.6 3128.3

Regression 1 63 830.8 63 830.8 83.38 0.000

Non-parallelism 2 8218.2 4109.1 5.37 0.007

Treatments 5 78 305.7

Residual error 54 41 340.9 765.57

Total 59 119 646.6

The analysis confirms a highly significant linear regression.
Departure from parallelism, however, is also significant
(p = 0.0075) which was to be expected from the graphical
observation that preparation U is not parallel to the
standard. This preparation is therefore rejected and the
analysis repeated using only preparation T and the standard
(Table 5.1.1.-III).

Table 5.1.1.-III. — Analysis of variance without sample U

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square F-ratio

Proba-
bility

Preparations 1 390.6 390.6

Regression 1 66 830.6 66 830.6 90.5 0.000

Non-parallelism 1 34.2 34.2 0.05 0.831

Treatments 3 67 255.5

Residual error 36 26 587.3 738.54

Total 39 93 842.8

The analysis without preparation U results in compliance
with the requirements with respect to both regression
and parallelism and so the potency can be calculated. The
formulae in Section 3.2.5 give :

— for the common slope :

— the ln(potency ratio) is :

— and ln(confidence limits) are :

By taking the antilogarithms we find a potency ratio of 1.11
with 95 per cent confidence limits from 0.82-1.51.

Multiplying by the assumed potency of preparation T yields a
potency of 1.11 units/mg with 95 per cent confidence limits
from 0.82 to 1.51 units/mg.

5.1.2. THREE-DOSE LATIN SQUARE DESIGN
Antibiotic agar diffusion assay using a rectangular tray

The standard has an assigned potency of 4855 IU/mg. The
test preparation has an assumed potency of 5600 IU/mg.
For the stock solutions 25.2 mg of the standard is dissolved
in 24.5 ml of solvent and 21.4 mg of the test preparation
is dissolved in 23.95 ml of solvent. The final solutions are
prepared by first diluting both stock solutions to 1/20 and
further using a dilution ratio of 1.5.

A Latin square is generated with the method described
in Section 8.6 (see Table 5.1.2.-I). The responses of this
routine assay are shown in Table 5.1.2.-II (inhibition zones
in mm × 10). The treatment mean values are shown in
Table 5.1.2.-III. A graphical representation of the data (see
Figure 5.1.2.-I) gives no rise to doubt the normality or
homogeneity of variance of the data.

The formulae in Tables 3.2.3.-I and 3.2.3.-II lead to :

P S
= 529.667 L S

= 35.833

P T
= 526.333 L T

= 39.333

H P = = 2 H L = = 3

The analysis of variance can now be completed with the
formulae in Tables 3.2.3.-III and 3.2.3.-IV. The result is shown
in Table 5.1.2.-IV.

The analysis shows significant differences between the rows.
This indicates the increased precision achieved by using a
Latin square design rather than a completely randomised
design. A highly significant regression and no significant
departure of the individual regression lines from parallelism
and linearity confirms that the assay is satisfactory for
potency calculations.
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Table 5.1.2.-I. — Distribution of treatments over the plate

1 2 3 4 5 6

1 S1 T1 T2 S3 S2 T3

2 T1 T3 S1 S2 T2 S3

3 T2 S3 S2 S1 T3 T1

4 S3 S2 T3 T1 S1 T2

5 S2 T2 S3 T3 T1 S1

6 T3 S1 T1 T2 S3 S2

Table 5.1.2.-II. — Measured inhibition zones in mm × 10

1 2 3 4 5 6 Row mean

1 161 160 178 187 171 194 175.2 = R1

2 151 192 150 172 170 192 171.2 = R2

3 162 195 174 161 193 151 172.7 = R3

4 194 184 199 160 163 171 178.5 = R4

5 176 181 201 202 154 151 177.5 = R5

6 193 166 161 186 198 182 181.0 = R6

Col.
Mean

172.8
= C1

179.7
= C2

177.2
= C3

178.0
= C4

174.8
= C5

173.5
= C6

Table 5.1.2.-III. — Means of the treatments

Standard S Preparation T

S1 S2 S3 T1 T2 T3

Mean 158.67 176.50 194.50 156.17 174.67 195.50

Figure 5.1.2.-I.

Table 5.1.2.-IV. — Analysis of variance

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square F-ratio Probabil-

ity

Preparations 1 11.1111 11.1111

Regression 1 8475.0417 8475.0417 408.1 0.000

Non-parallelism 1 18.3750 18.3750 0.885 0.358

Non-linearity 2 5.4722 2.7361 0.132 0.877

Treatments 5 8510

Rows 5 412 82.40 3.968 0.012

Columns 5 218.6667 43.73 2.106 0.107

Residual error 20 415.3333 20.7667

Total 35 9556

The formulae in Section 3.2.5 give :

— for the common slope :

— the ln(potency ratio) is :

— and ln(confidence limits) are :

The potency ratio is found by taking the antilogarithms,
resulting in 0.9763 with 95 per cent confidence limits from
0.9112-1.0456.

A correction factor of is

necessary because the dilutions were not exactly equipotent
on the basis of the assumed potency. Multiplying by this
correction factor and the assumed potency of 5600 IU/mg
yields a potency of 5456 IU/mg with 95 per cent confidence
limits from 5092 to 5843 IU/mg.

5.1.3. FOUR-DOSE RANDOMISED BLOCK DESIGN
Antibiotic turbidimetric assay

This assay is designed to assign a potency in international
units per vial. The standard has an assigned potency of
670 IU/mg. The test preparation has an assumed potency of
20 000 IU/vial. On the basis of this information the stock
solutions are prepared as follows. 16.7 mg of the standard
is dissolved in 25 ml solvent and the contents of one vial
of the test preparation are dissolved in 40 ml solvent. The
final solutions are prepared by first diluting to 1/40 and
further using a dilution ratio of 1.5. The tubes are placed
in a water-bath in a randomised block arrangement (see
Section 8.5). The responses are listed in Table 5.1.3.-I.

Inspection of Figure 5.1.3.-I gives no rise to doubt the validity
of the assumptions of normality and homogeneity of variance
of the data. The standard deviation of S3 is somewhat high
but is no reason for concern.
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Table 5.1.3.-I. — Absorbances of the suspensions (× 1000)

Standard S Preparation T

Block S1 S2 S3 S4 T1 T2 T3 T4 Mean

1 252 207 168 113 242 206 146 115 181.1

2 249 201 187 107 236 197 153 102 179.0

3 247 193 162 111 246 197 148 104 176.0

4 250 207 155 108 231 191 159 106 175.9

5 235 207 140 98 232 186 146 95 167.4

Mean 246.6 203.0 162.4 107.4 237.4 195.4 150.4 104.4

Figure 5.1.3.-I.

The formulae in Tables 3.2.3.-I and 3.2.3.-II lead to :

PS
= 719.4 LS

= −229.1

PT
= 687.6 LT

= −222

HP = = 1.25 HL = = 1

The analysis of variance is constructed with the formulae
in Tables 3.2.3.-III and 3.2.3.-IV. The result is shown in
Table 5.1.3.-II.

Table 5.1.3.-II. — Analysis of variance

Source of
variation

Degrees of
freedom

Sum of
squares

Mean square F-ratio Proba-
bility

Preparations 1 632.025 632.025

Regression 1 101 745.6 101 745.6 1887.1 0.000

Non-parallelism 1 25.205 25.205 0.467 0.500

Non-linearity 4 259.14 64.785 1.202 0.332

Treatments 7 102 662

Blocks 4 876.75 219.188 4.065 0.010

Residual error 28 1509.65 53.916

Total 39 105 048.4

A significant difference is found between the blocks. This
indicates the increased precision achieved by using a
randomised block design. A highly significant regression

and no significant departure from parallelism and
linearity confirms that the assay is satisfactory for potency
calculations. The formulae in Section 3.2.5 give :

— for the common slope :

— the ln(potency ratio) is :

— and ln(confidence limits) are :

The potency ratio is found by taking the antilogarithms,
resulting in 1.0741 with 95 per cent confidence
limits from 1.0291 to 1.1214. A correction factor of

is necessary because the

dilutions were not exactly equipotent on the basis of the
assumed potency. Multiplying by this correction factor and
the assumed potency of 20 000 IU/vial yields a potency
of 19 228 IU/vial with 95 per cent confidence limits from
18 423-20 075 IU/vial.

5.1.4. FIVE-DOSEMULTIPLE ASSAYWITH COMPLETELY
RANDOMISED DESIGN
An in-vitro assay of three hepatitis B vaccines against a
standard

3 independent two-fold dilution series of 5 dilutions were
prepared from each of the vaccines. After some additional
steps in the assay procedure, absorbances were measured.
They are shown in Table 5.1.4.-I.

Table 5.1.4.-I. — Optical densities

Dilution Standard S Preparation T

1:16 000 0.043 0.045 0.051 0.097 0.097 0.094

1:8000 0.093 0.099 0.082 0.167 0.157 0.178

1:4000 0.159 0.154 0.166 0.327 0.355 0.345

1:2000 0.283 0.295 0.362 0.501 0.665 0.576

1:1000 0.514 0.531 0.545 1.140 1.386 1.051

Dilution Preparation U Preparation V

1:16 000 0.086 0.071 0.073 0.082 0.082 0.086

1:8000 0.127 0.146 0.133 0.145 0.144 0.173

1:4000 0.277 0.268 0.269 0.318 0.306 0.316

1:2000 0.586 0.489 0.546 0.552 0.551 0.624

1:1000 0.957 0.866 1.045 1.037 1.039 1.068

The logarithms of the optical densities are known to have
a linear relationship with the logarithms of the doses. The
mean responses of the ln-transformed optical densities are
listed in Table 5.1.4.-II. No unusual features are discovered
in a graphical presentation of the data (Figure 5.1.4.-I).
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Table 5.1.4.-II. — Means of the ln-transformed absorbances

S1 −3.075 T1 −2.344 U1 −2.572 V1 −2.485

S2 −2.396 T2 −1.789 U2 −2.002 V2 −1.874

S3 −1.835 T3 −1.073 U3 −1.305 V3 −1.161

S4 −1.166 T4 −0.550 U4 −0.618 V4 −0.554

S5 −0.635 T5 0.169 U5 −0.048 V5 0.047

Figure 5.1.4.-I.

The formulae in Tables 3.2.3.-I and 3.2.3.-II give :

PS
= −9.108 LS

= 6.109

PT
= −5.586 LT

= 6.264

PU
= −6.544 LU

= 6.431

PV
= −6.027 LV

= 6.384

HP = = 0.6 HL = = 0.3

The analysis of variance is completed with the formulae in
Tables 3.2.3.-III and 3.2.3.-IV. This is shown in Table 5.1.4.-III.

Table 5.1.4.-III. — Analysis of variance

Source of
variation

Degrees of
freedom

Sum of
squares

Mean
square F-ratio Probabil-

ity

Preparations 3 4.475 1.492

Regression 1 47.58 47.58 7126 0.000

Non-
parallelism

3 0.0187 0.006 0.933 0.434

Non-linearity 12 0.0742 0.006 0.926 0.531

Treatments 19 52.152

Residual error 40 0.267 0.0067

Total 59 52.42

A highly significant regression and a non-significant
departure from parallelism and linearity confirm that
the potencies can be safely calculated. The formulae in
Section 3.2.5 give :

— for the common slope :

— the ln(potency ratio) for preparation T is :

— and ln(confidence limits) for preparation T are :

By taking the antilogarithms a potency ratio of 2.171 is
found with 95 per cent confidence limits from 2.027 to 2.327.
All samples have an assigned potency of 20 µg protein/ml
and so a potency of 43.4 µg protein/ml is found for test
preparation T with 95 per cent confidence limits from
40.5-46.5 µg protein/ml.
The same procedure is followed to estimate the potency
and confidence interval of the other test preparations. The
results are listed in Table 5.1.4.-IV.

Table 5.1.4.-IV. — Final potency estimates and 95 per cent
confidence intervals of the test vaccines (in µg protein/ml)

Lower limit Estimate Upper limit

Vaccine T 40.5 43.4 46.5

Vaccine U 32.9 35.2 37.6

Vaccine V 36.8 39.4 42.2

5.1.5. TWIN CROSS-OVER DESIGN
Assay of insulin by subcutaneous injection in rabbits
The standard preparation was administered at 1 unit and
2 units per millilitre. Equivalent doses of the unknown
preparation were used based on an assumed potency of 40
units per millilitre. The rabbits received subcutaneously
0.5 ml of the appropriate solutions according to the
design in Table 5.1.5.-I and responses obtained are shown
in Table 5.1.5.-II and Figure 5.1.5.-I. The large variance
illustrates the variation between rabbits and the need to
employ a cross-over design.

Table 5.1.5.-I. — Arrangements of treatments

Group of rabbits

1 2 3 4

Day 1 S1 S2 T1 T2

Day 2 T2 T1 S2 S1

Table 5.1.5.-II. — Response y: sum of blood glucose
readings (mg/100 ml) at 1 hour and hours

Group 1 Group 2 Group 3 Group 4

S1 T2 S2 T1 T1 S2 T2 S1

112 104 65 72 105 91 118 144

126 112 116 160 83 67 119 149

62 58 73 72 125 67 42 51

86 63 47 93 56 45 64 107

52 53 88 113 92 84 93 117

110 113 63 71 101 56 73 128

116 91 50 65 66 55 39 87

101 68 55 100 91 68 31 71

Mean 95.6 82.8 69.6 93.3 89.9 66.6 72.4 106.8
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Figure 5.1.5.-I.

The analysis of variance is more complicated for this assay
than for the other designs given because the component of
the sum of squares due to parallelism is not independent
of the component due to rabbit differences. Testing of
the parallelism of the regression lines involves a second
error-mean-square term obtained by subtracting the
parallelism component and 2 “interaction” components from
the component due to rabbit differences.

3 “interaction” components are present in the analysis of
variance due to replication within each group:

days × preparation ; days × regression ; days × parallelism.

These terms indicate the tendency for the components
(preparations, regression and parallelism) to vary from day
to day. The corresponding F-ratios thus provide checks on
these aspects of assay validity. If the values of F obtained are
significantly high, care should be exercised in interpreting
the results of the assay and, if possible, the assay should be
repeated.

The analysis of variance is constructed by applying the
formulae given in Tables 3.2.3.-I to 3.2.3.-III separately for
both days and for the pooled set of data. The formulae in
Tables 3.2.3.-I and 3.2.3.-II give :

Day 1 : PS
= 165.25 LS

= −13

PT
= 162.25 LT

= −8.75

HP
= HL

=

Day 2 : PS
= 173.38 LS

= −20.06

PT
= 176.00 LT

= −5.25

HP
= HL

=

Pooled : PS
= 169.31 LS

= −16.53

PT
= 169.13 LT

= −7.00

HP = HL
=

and with the formulae in Table 3.2.3.-III this leads to :

Day 1 Day 2 Pooled

SSprep = 18.000 SSprep
= 13.781 SSprep

= 0.141

SSreg
= 3784.5 SSreg

= 5125.8 SSreg
= 8859.5

SSpar = 144.5 SSpar
= 1755.3 SSpar

= 1453.5

The interaction terms are found as Day 1 + Day 2 - Pooled.

In addition the sum of squares due to day-to-day variation
is calculated as :

and the sum of squares due to blocks (the variation between
rabbits) as :

where Bi is the mean response per rabbit.

The analysis of variance can now be completed as shown
in Table 5.1.5.-III.

Table 5.1.5.-III. — Analysis of variance

Source of
variation

Degrees
of

freedom

Sum of
squares

Mean
square F-ratio

Proba-
bility

Non-
parallelism

1 1453.5 1453.5 1.064 0.311

Days × Prep. 1 31.6 31.6 0.023 0.880

Days × Regr. 1 50.8 50.8 0.037 0.849

Residual
error between
rabbits

28 38 258.8 1366.4

Rabbits 31 39 794.7 1283.7

Preparations 1 0.14 0.14 0.001 0.975

Regression 1 8859.5 8859.5 64.532 0.000

Days 1 478.5 478.5 3.485 0.072

Days × non-
par.

1 446.3 446.3 3.251 0.082

Residual
error within
rabbits

28 3844.1 137.3

Total 63 53 423.2

The analysis of variance confirms that the data fulfil the
necessary conditions for a satisfactory assay : a highly
significant regression, no significant departures from
parallelism, and none of the three interaction components
is significant.

The formulae in Section 3.2.5 give :

— for the common slope :

— the ln(potency ratio) is :

General Notices (1) apply to all monographs and other texts 587



5.3. Statistical analysis EUROPEAN PHARMACOPOEIA 6.0

— and ln(confidence limits) are :

By taking the antilogarithms a potency ratio of 1.003
with 95 per cent confidence limits from 0.835 to 1.204
is found. Multiplying by AT = 40 yields a potency of 40.1
units per millilitre with 95 per cent confidence limits from
33.4-48.2 units per millilitre.

5.2. SLOPE-RATIO MODEL

5.2.1. A COMPLETELY RANDOMISED (0,3,3)-DESIGN
An assay of factor VIII

A laboratory carries out a chromogenic assay of factor VIII
activity in concentrates. The laboratory has no experience
with the type of assay but is trying to make it operational.
3 equivalent dilutions are prepared of both the standard
and the test preparation. In addition a blank is prepared,
although a linear dose-response relationship is not expected
for low doses. 8 replicates of each dilution are prepared,
which is more than would be done in a routine assay.

A graphical presentation of the data shows clearly that the
dose-response relationship is indeed not linear at low doses.
The responses to blanks will therefore not be used in the
calculations (further assays are of course needed to justify
this decision). The formulae in Tables 3.3.3.1.-I and 3.3.3.1.-II
yield

PS
= 0.6524 PT

= 0.5651

LS
= 1.4693 LT

= 1.2656

aS = 0.318 aT = 0.318

bS = 0.329 bT = 0.271

GS
= 0.1554 GT

= 0.1156

JS = 4.17 · 10−8 JT = 2.84 · 10−6

and

HI
= 0.09524 a′ = 0.05298 K = 1.9764

and the analysis of variance is completed with the formulae
in Tables 3.3.3.1.-III and 3.3.3.1.-IV.

A highly significant regression and no significant deviations
from linearity and intersection indicate that the potency can
be calculated.

Slope of standard :

Slope of test sample :

Formula 3.3.5.1.-3 gives :

and the 95 per cent confidence limits are :

The potency ratio is thus estimated as 0.823 with 95 per cent
confidence limits from 0.817 to 0.829.

Table 5.2.1.-I. — Absorbances

Blank Standard S
(in IU/ml)

Preparation T
(in IU/ml)

Conc. B S1

0.01
S2

0.02
S3

0.03
T1

0.01
T2

0.02
T3

0.03

0.022 0.133 0.215 0.299 0.120 0.188 0.254

0.024 0.133 0.215 0.299 0.119 0.188 0.253

0.024 0.131 0.216 0.299 0.118 0.190 0.255

0.026 0.136 0.218 0.297 0.120 0.190 0.258

0.023 0.137 0.220 0.297 0.120 0.190 0.257

0.022 0.136 0.220 0.305 0.121 0.191 0.257

0.022 0.138 0.219 0.299 0.121 0.191 0.255

0.023 0.137 0.218 0.302 0.121 0.190 0.254

Mean 0.0235 0.1351 0.2176 0.2996 0.1200 0.1898 0.2554

Figure 5.2.1.-I.

Table 5.2.1.-II. — Analysis of variance

Source of
variation

Degrees
of

freedom

Sum of
squares

Mean
square F-ratio Probabil-

ity

Regression 2 0.1917 0.0958 24 850 0.000

Intersection 1 3 · 10−9 3 · 10−9 7 · 10−4 0.978

Non-linearity 2 2 · 10−5 1 · 10−5 2.984 0.061

Treatments 5 0.1917

Residual error 42 1.62 · 10−4 3.86 · 10−6

Total 47 0.1919

5.2.2. A COMPLETELY RANDOMISED (0,4,4,4)-DESIGN
An in-vitro assay of influenza vaccines
The haemagglutinin antigen (HA) content of 2 influenza
vaccines is determined by single radial immunodiffusion.
Both have a labelled potency of 15 µg HA per dose, which is
equivalent with a content of 30 µg HA/ml. The standard has
an assigned content of 39 µg HA/ml.
Standard and test vaccines are applied in 4 duplicate
concentrations which are prepared on the basis of the
assigned and the labelled contents. When the equilibrium
between the external and the internal reactant is established,
the zone of the annulus precipitation area is measured. The
results are shown in Table 5.2.2.-I.
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Table 5.2.2.-I. — Zone of precipitation area (mm2)

Conc. Standard S Preparation T Preparation U

( µg/ml) I II I II I II

7.5 18.0 18.0 15.1 16.8 15.4 15.7

15.0 22.8 24.5 23.1 24.2 20.2 18.6

22.5 30.4 30.4 28.9 27.4 24.2 23.1

30.0 35.7 36.6 34.4 37.8 27.4 27.0

A graphical presentation of the data shows no unusual
features (see Figure 5.2.2.-I). The formulae in Tables 3.3.3.1.-I
and 3.3.3.1.-II yield

PS
= 108.2 PT

= 103.85 PU
= 85.8

LS
= 301.1 LT

= 292.1 LU
= 234.1

aS = 141.0 aT = 116.7 aU = 139.8

bS = 61.2 bT = 64.95 bU = 39.2

GS
= 3114.3 GT

= 2909.4 GU
= 1917.3

JS = 0.223 JT = 2.227 JU = 0.083

and

HI
= 0.0093 a′ = 11.04 K = 14 785.8

and the analysis of variance is completed with the formulae
in Tables 3.3.3.1.-III and 3.3.3.1.-IV. This is shown in
Table 5.2.2.-II.

A highly significant regression and no significant deviations
from linearity and intersection indicate that the potency can
be calculated.

Slope of standard :

Slope of T is :

Slope of U is :

This leads to a potency ratio of 6.056/6.356 = 0.953 for
vaccine T and 4.123/6.356 = 0.649 for vaccine U.

And the confidence limits are found with formula 3.3.5.1.-4.

For vaccine T :

For vaccine U :

The HA content in µg/dose can be found by multiplying the
potency ratios and confidence limits by the assumed content
of 15 µg/dose. The results are given in Table 5.2.2.-III.

Figure 5.2.2.-I.

Table 5.2.2.-II. — Analysis of variance

Source of
variation

Degrees
of

freedom

Sum of
squares

Mean
square F-ratio Probabil-

ity

Regression 3 1087.7 362.6 339.5 0.000

Intersection 2 3.474 1.737 1.626 0.237

Non-linearity 6 5.066 0.844 0.791 0.594

Treatments 11 1096.2

Residual error 12 12.815 1.068

Total 23 1109.0

Table 5.2.2.-III. — Estimates of HA content (µg/dose)

Lower limit Estimate Upper limit

Vaccin T 13.4 14.3 15.3

Vaccin U 8.9 9.7 10.6

5.3. QUANTAL RESPONSES

5.3.1. PROBIT ANALYSIS OF A TEST PREPARATION
AGAINST A REFERENCE
An in-vivo assay of a diphtheria vaccine
A diphtheria vaccine (assumed potency 140 IU/vial) is
assayed against a standard (assigned potency 132 IU/vial).
On the basis of this information, equivalent doses
are prepared and randomly administered to groups of
guinea-pigs. After a given period, the animals are challenged
with diphtheria toxin and the number of surviving animals
recorded as shown in Table 5.3.1.-I.

Table 5.3.1.-I. — Raw data from a diphtheria assay in
guinea-pigs

Standard (S)
Assigned potency

132 IU/vial

Test preparation (T)
Assumed potency

140 IU/vial

dose
(IU/ml)

chal-
lenged

protect-
ed

dose
(I.U./ml)

chal-
lenged

protect-
ed

1.0 12 0 1.0 11 0

1.6 12 3 1.6 12 4

2.5 12 6 2.5 11 8

4.0 11 10 4.0 11 10
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The observations are transferred to the first working table
and the subsequent columns are computed as described in
Section 4.2.1. Table 5.3.1.-II shows the first cycle of this
procedure.

The sums of the last 6 columns are then calculated per
preparation and transferred to the second working table (see
Table 5.3.1.-III). The results in the other columns are found
with formulae 4.2.1.-4 to 4.2.1.-10. This yields a common
slope b of 1.655.

The values for Y in the first working table are now replaced by
a + bx and a second cycle is carried out (see Table 5.3.1.-IV).

The cycle is repeated until the difference between
2 consecutive cycles has become small. The second working
table should then appear as shown in Table 5.3.1.-V.

Linearity is tested as described in Section 4.2.2. The
χ2-value with 4 degrees of freedom is 0.851 + 1.070 = 1.921
representing a p-value of 0.750 which is not significant.

Since there are no significant deviations from linearity, the
test for parallelism can be carried out as described in the
same section. The χ2-value with 1 degree of freedom is

representing a p-value
of 0.974 which is not significant.
The ln(potency ratio) can now be estimated as described in
Section 4.2.3.

Further :

So ln confidence limits are :

The potency and confidence limits can now be found by
taking the antilogarithms and multiplying these by the
assumed potency of 140 IU/vial. This yields an estimate
of 160.6 IU/vial with 95 per cent confidence limits from
121.0-215.2 IU/vial.

Table 5.3.1.-II. — First working table in the first cycle

Vac-
cine Dose n r x p Y Z y w wx wy wx2 wy2 wxy

S 1.0 12 0 0.000 0.000 0 0.5 0.399 −1.253 7.64 0.00 −9.57 0.00 12.00 0.00

1.6 12 3 0.470 0.250 0 0.5 0.399 −0.627 7.64 3.59 −4.79 1.69 3.00 −2.25

2.5 12 6 0.916 0.500 0 0.5 0.399 0.000 7.64 7.00 0.00 6.41 0.00 0.00

4.0 11 10 1.386 0.909 0 0.5 0.399 1.025 7.00 9.71 7.18 13.46 7.36 9.95

T 1.0 11 0 0.000 0.000 0 0.5 0.399 −1.253 7.00 0.00 −8.78 0.00 11.00 0.00

1.6 12 4 0.470 0.333 0 0.5 0.399 −0.418 7.64 3.59 −3.19 1.69 1.33 −1.50

2.5 11 8 0.916 0.727 0 0.5 0.399 0.570 7.00 6.42 3.99 5.88 2.27 3.66

4.0 11 10 1.386 0.909 0 0.5 0.399 1.025 7.00 9.71 7.18 13.46 7.36 9.95

Table 5.3.1.-III. — Second working table in the first cycle

Vaccine w wx wy wx2 wy2 wxy Sxx Sxy Syy
a

S 29.92 20.30 −7.18 21.56 22.36 7.70 7.79 12.58 20.64 0.68 −0.24 −1.36

T 28.65 19.72 −0.80 21.03 21.97 12.11 7.46 12.66 21.95 0.69 −0.03 −1.17

Table 5.3.1.-IV. — First working table in the second cycle

Vac-
cine Dose n r x p Y Z y w wx wy wx2 wy2 wxy

S 1.0 12 0 0.000 0.000 −1.36 0.086 0.158 −1.911 3.77 0.00 −7.21 0.00 13.79 0.00

1.6 12 3 0.470 0.250 −0.58 0.279 0.336 −0.672 6.74 3.17 −4.53 1.49 3.04 −2.13

2.5 12 6 0.916 0.500 0.15 0.561 0.394 −0.001 7.57 6.94 −0.01 6.36 0.00 −0.01

4.0 11 10 1.386 0.909 0.93 0.824 0.258 1.260 5.07 7.03 6.39 9.75 8.05 8.86

T 1.0 11 0 0.000 0.000 −1.17 0.122 0.202 −1.769 4.20 0.00 −7.43 0.00 13.14 0.00

1.6 12 4 0.470 0.333 −0.39 0.349 0.370 −0.430 7.23 3.40 −3.11 1.60 1.34 −1.46

2.5 11 8 0.916 0.727 0.35 0.637 0.375 0.591 6.70 6.14 3.96 5.62 2.34 3.63

4.0 11 10 1.386 0.909 1.13 0.870 0.211 1.311 4.35 6.03 5.70 8.36 7.48 7.90

Table 5.3.1.-V. — Second working table after sufficient cycles

Vaccine w wx wy wx2 wy2 wxy Sxx Sxy Syy
a

S 18.37 14.80 −2.14 14.85 17.81 5.28 2.93 7.00 17.56 0.81 −0.12 −2.05

T 17.96 12.64 −0.55 11.86 18.35 6.76 2.96 7.15 18.34 0.70 −0.03 −1.72
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Figure 5.3.1.-I.

5.3.2. LOGIT ANALYSIS AND OTHER TYPES OF
ANALYSES OF A TEST PREPARATION AGAINST A
REFERENCE
Results will be given for the situation where the logit method
and other “classical” methods of this family are applied to
the data in Section 5.3.1. This should be regarded as an
exercise rather than an alternative to the probit method
in this specific case. Another shape of the curve may
be adopted only if this is supported by experimental or
theoretical evidence. See Table 5.3.2.-I.

Table 5.3.2.-I. — Results by using alternative curves

Logit Gompit Angle(*)

Z

slope b 4.101 2.590 1.717

χ2 lin 2.15 3.56 1.50

χ2 par 0.0066 0.168 0.0010

Potency 162.9 158.3 155.8

Lower limit 121.1 118.7 122.6

Upper limit 221.1 213.3 200.7

(*)

5.3.3. THE ED50 DETERMINATION OF A SUBSTANCE
USING THE PROBIT METHOD
An in-vitro assay of oral poliomyelitis vaccine
In an ED50 assay of oral poliomyelitis vaccine with 10 different
dilutions in 8 replicates of 50 µl on an ELISA-plate, results
were obtained as shown in Table 5.3.3.-I.
The observations are transferred to the first working table
and the subsequent columns are computed as described in
Section 4.2.1. Table 5.3.3.-II shows the first cycle of this
procedure.

Table 5.3.3.-I. — Dilutions (10x µl of the undiluted vaccine)

−3.5 −4.0 −4.5 −5.0 −5.5 −6.0 −6.5 −7.0 −7.5 −8.0

+ + + + − − − − − −

+ + + + − − − − − −

+ + − − − − − − − −

+ + + + − − − − − −

+ + + − − − − − − −

+ + + + + − − − − −

+ + + + + − + − − −

+ + + + − + − − − −

The sums of the last 6 columns are calculated and transferred
to the second working table (see Table 5.3.3.-III). The results
in the other columns are found with formulae 4.2.1.-4 to
4.2.1.-10. This yields a common slope b of −0.295.
The values for Y in the first working table are now replaced
by a + bx and a second cycle is carried out. The cycle is
repeated until the difference between 2 consecutive cycles
has become small. The second working table should then
appear as shown in Table 5.3.3.-IV.
Linearity is tested as described in Section 4.2.2. The χ2-value
with 8 degrees of freedom is 2.711 representing a p-value of
0.951 which is not significant.

Figure 5.3.3.-I.
The potency ratio can now be estimated as described in
Section 4.5.

Further :

So ln confidence limits are :

This estimate is still expressed in terms of the ln(dilutions).
In order to obtain estimates expressed in ln(ED50)/ml the
values are transformed to .
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Table 5.3.3.-II. — First working table in the first cycle
Vaccine Dose n r x p Y Z y w wx wy wx2 wy2 wxy

T 10−3.5 8 0 −8.06 0.000 0.00 0.5 0.399 −1.253 5.09 −41.04 −6.38 330.8 8.00 51.4

10−4.0 8 0 −9.21 0.000 0.00 0.5 0.399 −1.253 5.09 −46.91 −6.38 432.0 8.00 58.8

10−4.5 8 1 −10.36 0.125 0.00 0.5 0.399 −0.940 5.09 −52.77 −4.79 546.8 4.50 49.6

10−5.0 8 2 −11.51 0.250 0.00 0.5 0.399 −0.627 5.09 −58.63 −3.19 675.1 2.00 36.7

10−5.5 8 6 −12.66 0.750 0.00 0.5 0.399 0.627 5.09 −64.50 3.19 816.8 2.00 −40.4

10−6.0 8 7 −13.82 0.875 0.00 0.5 0.399 0.940 5.09 −70.36 4.79 972.1 4.50 −66.1

10−6.5 8 7 −14.97 0.875 0.00 0.5 0.399 0.940 5.09 −76.23 4.79 1140.8 4.50 −71.7

10−7.0 8 8 −16.12 1.000 0.00 0.5 0.399 1.253 5.09 −82.09 6.38 1323.1 8.00 −102.9

10−7.5 8 8 −17.27 1.000 0.00 0.5 0.399 1.253 5.09 −87.95 6.38 1518.9 8.00 −110.2

10−8.0 8 8 −18.42 1.000 0.00 0.5 0.399 1.253 5.09 −93.82 6.38 1728.2 8.00 −117.6

Table 5.3.3.-III. — Second working table in the first cycle
Vaccine w wx wy wx2 wy2 wxy Sxx Sxy Syy

a

T 50.93 −674.3 11.17 9484.6 57.50 −312.32 556.92 −164.43 55.05 −13.24 0.219 −3.690

Table 5.3.3.-IV. — Second working table after sufficient cycles
Vaccine w wx wy wx2 wy2 wxy Sxx Sxy Syy

a

T 19.39 −238.2 0.11 2981.1 26.05 −37.45 55.88 −36.11 26.05 −12.28 0.006 −7.931

Since it has become common use to express the potency of
this type of vaccine in terms of log10(ED50)/ml, the results
have to be divided by ln(10). The potency is thus estimated
as 6.63 log10(ED50)/ml with 95 per cent confidence limits
from 6.30 to 6.96 log10(ED50)/ml.

5.4. EXTENDED SIGMOID DOSE-RESPONSE CURVES
5.4.1. FOUR-PARAMETER LOGISTIC CURVE ANALYSIS
A serological assay of tetanus sera
As already stated in Section 3.4, this example is intended to
illustrate a “possible” way to analyse the data presented, but
not necessarily to reflect the “only” or the “most appropriate”
way. Many other approaches can be found in the literature,
but in most cases they should not yield dramatically different
outcomes. A short discussion of alternative approaches and
other statistical considerations is given in Section 7.5.
A guinea-pig antiserum is assayed against a standard serum
(0.4 IU/ml) using an enzyme-linked immunosorbent assay
technique (ELISA). 10 two-fold dilutions of each serum were
applied on a 96-well ELISA plate. Each dilution was applied
twice. The observed responses are listed in Table 5.4.1.-I.

Table 5.4.1.-I. — Observed responses

Standard S Preparation to be examined T

Dil. Obs. 1 Obs. 2 Dil. Obs. 1 Obs. 2

1/10 2.912 2.917 1/10 3.017 2.987

1/20 2.579 2.654 1/20 2.801 2.808

1/40 2.130 2.212 1/40 2.401 2.450

1/80 1.651 1.638 1/80 1.918 1.963

1/160 1.073 0.973 1/160 1.364 1.299

1/320 0.585 0.666 1/320 0.861 0.854

1/640 0.463 0.356 1/640 0.497 0.496

1/1280 0.266 0.234 1/1280 0.340 0.344

1/2560 0.228 0.197 1/2560 0.242 0.217

1/5120 0.176 0.215 1/5120 0.178 0.125

For this example, it will be assumed that the laboratory
has validated conditions 1 to 3 in Section 3.1.1 when the
assay was being developed for routine use. In addition, the
laboratory has validated that the upper limit and lower limit
of the samples can be assumed to be equal.

No unusual features are discovered in a graphical
representation. A least squares method of a suitable
computer program is used to fit the parameters of the
logistic function, assuming that the residual error terms
are independent and identically distributed normal random
variables. In this case, 3 parameters (α, β and δ) are needed
to describe the common slope-factor and the common lower
and upper asymptotes. 2 additional parameters (γS and γT) are
needed to describe the horizontal location of the 2 curves.

The following estimates of the parameters are returned by
the program:

In addition, the estimated residual variance (s2) is returned
as 0.001429 with 20 degrees of freedom (within-treatments
variation).

In order to obtain confidence limits, and also to check
for parallelism and linearity, the observed responses (u)
are linearised and submitted to a weighted parallel-line
analysis by the program. This procedure is very similar to
that described in Section 4.2 for probit analysis with the
following modifications :
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The resulting weighted analysis of variance of the
transformed responses (y) using weights (w) is shown in
Table 5.4.1.-II.

Table 5.4.1.-II — Weighted analysis of variance

Source of variation Degrees of
freedom Chi-square Probability

Preparations 1 0.529653 0.467

Regression 1 6599.51 0.000

Non-parallelism 1 0.0458738 0.830

Non-linearity 16 8.89337 0.918

Treatments 19 6608.98 0.000

Residual error 20 20.0000

Total 39 6628.98

There are no significant deviations from parallelism and
linearity and thus the assay is satisfactory for potency
calculations. If the condition of equal upper and lower
asymptotes is not fulfilled, significant deviations from
linearity and/or parallelism are likely to occur because the
tests for linearity and parallelism reflect the goodness of fit
of the complete four-parameter model. The residual error in
the analysis of variance is always equal to 1 as a result of the
transformation. However, a heterogeneity factor (analogous
to that for the probit model) can be computed.

The relative potency of the test preparation can be
obtained as the antilogarithm of γS − γT. Multiplying by
the assigned potency of the standard yields an estimate of
1.459 × 0.4 = 0.584 IU/ml. Formula 4.2.3.-2 gives 95 per
cent confidence limits from 0.557-0.612 IU/ml.

6. COMBINATION OF ASSAY RESULTS

6.1. INTRODUCTION

Replication of independent assays and combination of their
results is often needed to fulfil the requirements of the
European Pharmacopoeia. The question then arises as to
whether it is appropriate to combine the results of such
assays and if so in what way.

2 assays may be regarded as mutually independent when
the execution of either does not affect the probabilities of
the possible outcomes of the other. This implies that the
random errors in all essential factors influencing the result
(for example, dilutions of the standard and of the preparation
to be examined, the sensitivity of the biological indicator) in
one assay must be independent of the corresponding random
errors in the other one. Assays on successive days using the
original and retained dilutions of the standard therefore are
not independent assays.

There are several methods for combining the results of
independent assays, the most theoretically acceptable being
the most difficult to apply. 3 simple, approximate methods
are described below; others may be used provided the
necessary conditions are fulfilled.

Before potencies from assays based on the parallel-line
or probit model are combined they must be expressed in
logarithms; potencies derived from assays based on the
slope-ratio model are used as such. As the former models are
more common than those based on the slope-ratio model, the
symbol M denoting ln potency is used in the formulae in this
section ; by reading R (slope-ratio) for M, the analyst may use

the same formulae for potencies derived from assays based
on the slope-ratio model. All estimates of potency must be
corrected for the potency assigned to each preparation to be
examined before they are combined.

6.2. WEIGHTED COMBINATION OF ASSAY RESULTS

This method can be used provided the following conditions
are fulfilled :

1) the potency estimates are derived from independent
assays ;

2) for each assay C is close to 1 (say less than 1.1) ;

3) the number of degrees of freedom of the individual
residual errors is not smaller than 6, but preferably larger
than 15;

4) the individual potency estimates form a homogeneous
set (see Section 6.2.2).

When these conditions are not fulfilled this method cannot
be applied. The method described in Section 6.3 may then
be used to obtain the best estimate of the mean potency to
be adopted in further assays as an assumed potency.

6.2.1. CALCULATION OF WEIGHTING COEFFICIENTS
It is assumed that the results of each of the n′ assays
have been analysed to give n′ values of M with associated
confidence limits. For each assay the logarithmic confidence
interval L is obtained by subtracting the lower limit from the
upper. A weight W for each value of M is calculated from
equation 6.2.1.-1, where t has the same value as that used in
the calculation of confidence limits.

(6.2.1.-1)

6.2.2. HOMOGENEITY OF POTENCY ESTIMATES
By squaring the deviation of each value of M from the
weighted mean, multiplying by the appropriate weight and
summing over all assays, a statistic is obtained which is
approximately distributed as χ2 (see Table 8.3) and which
may be used to test the homogeneity of a set of ln potency
estimates :

(6.2.2.-1)

If the calculated χ2 is smaller than the tabulated value
corresponding to (n′ − 1) degrees of freedom the potencies
are homogeneous and the mean potency and limits obtained
in Section 6.2.3 will be meaningful.

If the calculated value of this statistic is greater than the
tabulated value, the potencies are heterogeneous. This
means that the variation between individual estimates of M is
greater than would have been predicted from the estimates of
the confidence limits, i.e. that there is a significant variability
between the assays. Under these circumstances condition 4
is not fulfilled and the equations in Section 6.2.3 are no
longer applicable. Instead, the formulae in Section 6.2.4
may be used.

6.2.3. CALCULATION OF THE WEIGHTED MEAN AND
CONFIDENCE LIMITS
The products WM are formed for each assay and their sum
divided by the total weight for all assays to give the logarithm
of the weighted mean potency.

(6.2.3.-1)
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The standard error of the ln (mean potency) is taken to be
the square root of the reciprocal of the total weight :

(6.2.3.-2)

and approximate confidence limits are obtained from the
antilogarithms of the value given by

(6.2.3.-3)

where the number of degrees of freedom of t equals the sum
of the number of degrees of freedom for the error mean
squares in the individual assays.

6.2.4. WEIGHTED MEAN AND CONFIDENCE LIMITS
BASED ON THE INTRA- AND INTER-ASSAY VARIATION
When results of several repeated assays are combined, the
(χ2-value may be significant. The observed variation is then
considered to have two components :

— the intra-assay variation ,

— the inter-assay variation

where is the unweighted mean. The former varies from
assay to assay whereas the latter is common to all M.

For each M a weighting coefficient is then calculated as :

which replaces W in Section 6.2.3. where t is taken to be
approximately 2.

6.3. UNWEIGHTED COMBINATION OF ASSAY RESULTS

To combine the n′ estimates of M from n′ assays in the
simplest way, the mean is calculated and an estimate of its
standard deviation is obtained by calculating :

(6.3.-1)

and the limits are :

(6.3.-2)

where t has (n′ − 1) degrees of freedom. The number n′ of
estimates of M is usually small, and hence the value of t is
quite large.

6.4. EXAMPLE OF A WEIGHTED MEAN POTENCY WITH
CONFIDENCE LIMITS

Table 6.4.-I lists 6 independent potency estimates of the
same preparation together with their 95 per cent confidence
limits and the number of degrees of freedom of their error
variances. Conditions 1, 2 and 3 in Section 6.2. are met. The
ln potencies and the weights are calculated as described in
Section 6.2.

Table 6.4.-I. — Potency estimates and confidence intervals
of 6 independent assays

Potency
estimate
(I.U./vial)

Lower
limit

(I.U./vial)

Upper
limit

(I.U./vial)

Degrees
of

free-
dom

ln
poten-
cy
M

Weight
W

18 367 17 755 19 002 20 9.8183 3777.7

18 003 17 415 18 610 20 9.7983 3951.5

18 064 17 319 18 838 20 9.8017 2462.5

17 832 17 253 18 429 20 9.7887 4003.0

18 635 17 959 19 339 20 9.8328 3175.6

18 269 17 722 18 834 20 9.8130 4699.5

Homogeneity of potency estimates is assessed with formula
6.2.2.-1 which gives a χ2 of 4.42 with 5 degrees of freedom.
This is not significant (p = 0.49) and thus all conditions are
met.
A weighted mean potency is calculated with formula 6.2.3.-1
which yields 9.8085.
Formula 6.2.3.-2 gives a standard deviation of 0.00673 and
approximate 95 per cent confidence limits of 9.7951 and
9.8218 are calculated with formula 6.2.3.-3 where t has
120 degrees of freedom.
By taking the antilogarithms a potency of 18 187 IU/vial
is found with 95 per cent confidence limits from
17 946-18 431 IU/vial.

7. BEYOND THIS ANNEX
It is impossible to give a comprehensive treatise of
statistical methods in a pharmacopoeial text. However, the
methods described in this annex should suffice for most
pharmacopoeial purposes. This section tries to give a more
abstract survey of alternative or more general methods that
have been developed. The interested reader is encouraged to
further explore the existing literature in this area. The use
of more specialised statistical methods should, in any case,
be left to qualified personnel.

7.1. GENERAL LINEAR MODELS
The methods given in this annex can be described in terms
of general linear models (or generalised linear models to
include the probit and logit methods). The principle is to
define a linear structure matrix X (or design matrix) in which
each row represents an observation and each column a linear
effect (preparation, block, column, dose). For example : the
Latin square design in example 5.1.2 would involve a matrix
with 36 rows and 13 columns. 1 column for each of the
preparations, 1 column for the doses, 5 columns for each
block except the first, and 5 columns for each row except the
first. All columns, except the one for doses, are filled with 0
or 1 depending on whether or not the observation relates
to the effect. A vector Y is filled with the (transformed)
observations. The effects are estimated with the formula
(XtX)−1XtY from which the potency estimate m can easily be
derived as a ratio of relevant effects. Confidence intervals
are calculated from Fieller’s theorem:

mL, mU

where g
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and v11, v22, v12 represent the variance multipliers for the
numerator, the denominator and their covariance multiplier
respectively. These are taken directly from (XtX)−1 or
indirectly by noting that :

Var(a1 − a2) = Var(a1) + Var(a2)–2Cov(a1,a2)

and Cov(a1 − a2 ,b) = Cov(a1 ,b) − Cov(a2 ,b)

A full analysis of variance in which all components are
partitioned is slightly more complicated as it involves a
renewed definition of X with more columns to relax the
assumptions of parallelism and linearity, after which the
linear hypotheses can be tested. For assays depending upon
quantal responses the linear effects (intercepts aS, aT etc. and
the common slope b are found by maximising the sum over
treatments of nln (ai + bx) + (n − r)ln(1 − (ai + bx)) where
x is the ln(dose), denotes the shape of the distribution
and i ∈ {S, T, ...}.

7.2. HETEROGENEITY OF VARIANCE

Heterogeneity of variance cannot always be solved by simply
transforming the responses. A possible way to cope with
this problem is to perform a weighted linear regression.
In order to obtain an unbiased estimate, the weight of the
observations is taken to be proportional to the reciprocal
of the error variances. Since the true error variance is not
always known, an iterative reweighted linear procedure may
be followed. However, the calculation of the confidence
interval involves new problems.

7.3. OUTLIERS AND ROBUST METHODS

The method of least squares described in this annex has
the disadvantage of being very sensitive to outliers. A
clear outlier may completely corrupt the calculations. This
problem is often remedied by discarding the outlying result
from the dataset. This policy can lead to arbitrary rejection
of data and is not always without danger. It is not easy to
give a general guideline on how to decide whether or not a
specific observation is an outlier and it is for this reason that
many robust methods have been developed. These methods
are less sensitive to outliers because they give less weight to
observations that are far away from the predicted value. New
problems usually arise in computing confidence intervals or
defining a satisfactory function to be minimised.

7.4. CORRELATED ERRORS

Absolute randomisation is not always feasible or very
undesirable from a practical point of view. Thus, subsequent
doses within a dilution series often exhibit correlated errors
leading to confidence limits that are far too narrow. Some
methods have been developed that take account of this
autocorrelation effect.

7.5. EXTENDED NON-LINEAR DOSE-RESPONSE CURVES

Analysis of extended non-linear dose-response curves raises a
number of statistical questions which require consideration,
and for which professional advice is recommended. Some
of these are indicated below.

1) An example using the four-parameter logistic function has
been shown. However, models based on functions giving
other sigmoid curves may also be used. Models incorporating
additional asymmetry parameters have been suggested.

2) Heterogeneity of variance is common when responses
cover a wide range. If the analysis ignores the heterogeneity,
interpretation of results may not be correct and estimates
may be biased. Use of the reciprocal of the error variances

as weights is unlikely to be reliable with limited numbers
of replicates. It may be appropriate to estimate a function
which relates variance to mean response.
3) The statistical curve-fitting procedures may give different
estimates depending on assumptions made about the
homogeneity of the variance and on the range of responses
used.
4) In principle, equality of upper and lower response limits
for the different preparations included in an assay can be
directly tested in each assay. However, interpretation of the
results of these tests may not be straightforward. The tests
for linearity and parallelism given by the simplified method
of analysis (Example 5.4.1) indirectly incorporate tests for
equality and accuracy of upper and lower limits.
5) Many assays include “controls” which are intended to
identify the upper and/or lower response limits. However,
these values may not be consistent with the statistically
fitted upper and lower response limits based on the extended
dose-response curve.
6) The simplified method of analysis given in Example 5.4.1
provides approximate confidence intervals. Other methods
may also be used, for example intervals based on lack-of-fit of
the completely specified model. For typical assay data, with
responses covering the complete range for each preparation
tested, all methods give similar results.

7.6. NON-PARALLELISM OF DOSE-RESPONSE CURVES
Similarity of dose-response relationships is a fundamental
criterion for assessing whether an assay may be regarded
as a dilution assay and hence whether the estimation of
relative potency is valid (see Section 3.1.1). This criterion
is frequently met by showing that dose-response curves for
standard and test samples do not deviate significantly from
parallelism. Underestimation of the residual error can lead
to excess rejection of assays due to significant deviations
from parallelism and/or linearity. This is often an artefact of
inappropriate assay design or analysis. Minor modifications
to assay designs might in many cases substantially improve
the estimation of the residual error. Analysis allowing for
the actual level of replication may also improve the situation.
If estimation of the relevant residual error is not feasible
for individual assays, for example because it is impractical
to create independent doses and/or replicates, it might be
possible to obtain a more correct estimate of the residual
error during the assay validation process. There may also
be cases where the assay system is sufficiently precise to
detect slight but genuine non-parallelism. If there is true
non-parallelism this needs to be recognised and a suitable
solution adopted. A solution might, for example, require
a suitable standard that is similar in composition to, and
therefore parallel to, the test samples. If the assay system
is responding in a non-specific manner to extraneous
components of the standard or test samples, then a more
specific assay system that does not respond to the irrelevant
components may be the solution. No simple, generally
applicable statistical solution exists to overcome these
fundamental problems. The appropriate action has to be
decided on a case-by-case basis with the help of statistical
expertise.

8. TABLES AND GENERATING
PROCEDURES
The tables in this section list the critical values for the most
frequently occurring numbers of degrees of freedom. If
a critical value is not listed, reference should be made to
more extensive tables. Many computer programs include
statistical functions and their use is recommended instead
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of the tables in this section. Alternatively, the generating
procedures given below each table can be used to compute
the probability corresponding to a given statistic and number
of degrees of freedom.

8.1. THE F-DISTRIBUTION
If an observed value is higher than the value in Table 8.1.-I,
it is considered to be significant (upper lines, p = 0.05) or
highly significant (lower lines, p = 0.01). df1 is the number of
degrees of freedom of the numerator and df2 is the number
of degrees of freedom of the denominator.

Generating procedure. Let F be the F-ratio and df1 and
df2 as described above. Let pi = = 3.14159265358979...
The procedure in Table 8.1.-II will then generate the p-value.

8.2. THE -DISTRIBUTION

If an observed value is higher than the value in Table 8.2.-I, it
is considered to be significant (p = 0.05) or highly significant
(p = 0.01).

Generating procedures. The p-value for a given t with df
degrees of freedom can be found with the procedures in
Section 8.1 where F = t2, df1 = 1 and df2 = df.

Table 8.1.-I — Critical values of the F-distribution
df1 → 1 2 3 4 5 6 8 10 12 15 20 ∞

df2 ↓

10 4.965 4.103 3.708 3.478 3.326 3.217 3.072 2.978 2.913 2.845 2.774 2.538

10.044 7.559 6.552 5.994 5.636 5.386 5.057 4.849 4.706 4.558 4.405 3.909

12 4.747 3.885 3.490 3.259 3.106 2.996 2.849 2.753 2.687 2.617 2.544 2.296

9.330 6.927 5.953 5.412 5.064 4.821 4.499 4.296 4.155 4.010 3.858 3.361

15 4.543 3.682 3.287 3.056 2.901 2.790 2.641 2.544 2.475 2.403 2.328 2.066

8.683 6.359 5.417 4.893 4.556 4.318 4.004 3.805 3.666 3.522 3.372 2.868

20 4.351 3.493 3.098 2.866 2.711 2.599 2.447 2.348 2.278 2.203 2.124 1.843

8.096 5.849 4.938 4.431 4.103 3.871 3.564 3.368 3.231 3.088 2.938 2.421

25 4.242 3.385 2.991 2.759 2.603 2.490 2.337 2.236 2.165 2.089 2.007 1.711

7.770 5.568 4.675 4.177 3.855 3.627 3.324 3.129 2.993 2.850 2.699 2.169

30 4.171 3.316 2.922 2.690 2.534 2.421 2.266 2.165 2.092 2.015 1.932 1.622

7.562 5.390 4.510 4.018 3.699 3.473 3.173 2.979 2.843 2.700 2.549 2.006

50 4.034 3.183 2.790 2.557 2.400 2.286 2.130 2.026 1.952 1.871 1.784 1.438

7.171 5.057 4.199 3.720 3.408 3.186 2.890 2.698 2.563 2.419 2.265 1.683

∞ 3.841 2.996 2.605 2.372 2.214 2.099 1.938 1.831 1.752 1.666 1.571 1.000

6.635 4.605 3.782 3.319 3.017 2.802 2.511 2.321 2.185 2.039 1.878 1.000

Table 8.1.-II — Generating procedure for the F-distribution
If df1 is even If df1 is odd and df2 is even If df1 and df2 are odd

x=df1/(df1+df2/F) x=df2/(df2+df1*F) x=atn(sqr(df1*F/df2))
s=1 s=1 cs=cos(x)
t=1 t=1 sn=sin(x)
for i=2 to (df1-2) step 2 for i=2 to (df2-2) step 2 x=x/2
t=t*x*(df2+i-2)/i t=t*x*(df1+i-2)/i s=0
s=s+t s=s+t t=sn*cs/2
next i next i v=0
p=s*(1-x)^(df2/2) p=1-s*(1-x)^(df1/2) w=1

for i=2 to (df2-1) step 2
s=s+t
t=t*i/(i+1)*cs*cs
next i
for i=1 to (df1-2) step 2
v=v+w
w=w*(df2+i)/(i+2)*sn*sn
next i
p=1+(t*df2*v-x-s)/pi*4
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The t-value (p = 0.05) for a given number of degrees of
freedom df can be found with the procedure in Table 8.2.-II,
which should be accurate up to 6 decimal places.

Table 8.2.-I — Critical values of the t-distribution

df p = 0.05 p = 0.01 df p = 0.05 p = 0.01

1 12.706 63.656 22 2.074 2.819

2 4.303 9.925 24 2.064 2.797

3 3.182 5.841 26 2.056 2.779

4 2.776 4.604 28 2.048 2.763

5 2.571 4.032 30 2.042 2.750

6 2.447 3.707 35 2.030 2.724

7 2.365 3.499 40 2.021 2.704

8 2.306 3.355 45 2.014 2.690

9 2.262 3.250 50 2.009 2.678

10 2.228 3.169 60 2.000 2.660

12 2.179 3.055 70 1.994 2.648

14 2.145 2.977 80 1.990 2.639

16 2.120 2.921 90 1.987 2.632

18 2.101 2.878 100 1.984 2.626

20 2.086 2.845 ∞ 1.960 2.576

Table 8.2.-II — Generating procedure for the t-distribution

t = 1.959964+

2.37228/df+

2.82202/df^2+

2.56449/df^3+

1.51956/df^4+

1.02579/df^5+

0.44210/df^7

8.3. THE 2-DISTRIBUTION

Table 8.3.-I — Critical values of the 2-distribution

df p = 0.05 p = 0.01 df p = 0.05 p = 0.01

1 3.841 6.635 11 19.675 24.725

2 5.991 9.210 12 21.026 26.217

3 7.815 11.345 13 22.362 27.688

4 9.488 13.277 14 23.685 29.141

5 11.070 15.086 15 24.996 30.578

6 12.592 16.812 16 26.296 32.000

7 14.067 18.475 20 31.410 37.566

8 15.507 20.090 25 37.652 44.314

9 16.919 21.666 30 43.773 50.892

10 18.307 23.209 40 55.758 63.691

If an observed value is higher than the value in Table 8.3.-I, it
is considered to be significant (p = 0.05) or highly significant
(p = 0.01).

Generating procedure. Let X2 be the χ2-value and df as
described above. The procedure in Table 8.3.-II will then
generate the p-value.

Table 8.3.-II — Generating procedure for the 2-distribution

If df is even If df is odd

s=0 x=sqr(x2)

t=exp(-x2/2) s=0

for i=2 to df step 2 t=x*exp(-x2/2)/sqr(pi/2)

s=s+t for i=3 to df step 2

t=t*x2/i s=s+t

next i t=t*x2/i

p=1-s next i

p=1-s-2*phi(x)

In this procedure phi is the cumulative standard normal
distribution function (see Section 8.4).

8.4. THE -DISTRIBUTION (THE CUMULATIVE
STANDARD NORMAL DISTRIBUTION)

Table 8.4.-I — Values of the -distribution

x x x

0.00 0.500 1.00 0.841 2.00 0.977

0.05 0.520 1.05 0.853 2.05 0.980

0.10 0.540 1.10 0.864 2.10 0.982

0.15 0.560 1.15 0.875 2.15 0.984

0.20 0.579 1.20 0.885 2.20 0.986

0.25 0.599 1.25 0.894 2.25 0.988

0.30 0.618 1.30 0.903 2.30 0.989

0.35 0.637 1.35 0.911 2.35 0.991

0.40 0.655 1.40 0.919 2.40 0.992

0.45 0.674 1.45 0.926 2.45 0.993

0.50 0.691 1.50 0.933 2.50 0.994

0.55 0.709 1.55 0.939 2.55 0.995

0.60 0.726 1.60 0.945 2.60 0.995

0.65 0.742 1.65 0.951 2.65 0.996

0.70 0.758 1.70 0.955 2.70 0.997

0.75 0.773 1.75 0.960 2.75 0.997

0.80 0.788 1.80 0.964 2.80 0.997

0.85 0.802 1.85 0.968 2.85 0.998

0.90 0.816 1.90 0.971 2.90 0.998

0.95 0.829 1.95 0.974 2.95 0.998

The -value for negative x is found from Table 8.4.-I as
1 - (-x).
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Generating procedure : Let x be the x-value. The procedure
in Table 8.4.-II will generate the corresponding -value if
0 ≤ x ≤ 8.15. If x is greater than 8.15 the -value can be set
to 1. If x is negative, the formula given above can be used.
This procedure assumes that the computer can represent
about 15 decimal places. If less digits or more digits can be
represented, the procedure needs some trivial modifications.

Table 8.4.-II — Generating procedure for the -distribution

s=0

t=x

i=1

repeat

s=s+t

i=i+2

t=t*x*x/i

until t<1E-16

phi=0.5+s*exp(-x*x/2)/sqr(2*pi)

8.5. RANDOM PERMUTATIONS
Random permutations are needed in randomised block
designs. The following algorithm shows how the built-in
random generator of a computer can be used to create
random permutations of N treatments.
Step 1. Write the N possible treatments down in a row.
Step 2. Obtain a random integer r such that 1≤ r ≤ N.
Step 3. Exchange the r-th treatment with the N-th treatment
in the row.
Step 4. Let N = N − 1 and repeat steps 2 to 4 until N = 1.

An example with 6 treatments will illustrate this algorithm.

1. N = 6 S1 S2 S3 T1 T2 T3

2. r = 2 → ←

3. S1 T3 S3 T1 T2 S2

4. N = 5

2. r = 4 → ←

3. S1 T3 S3 T2 T1 S2

4. N = 4

2. r = 4 ↓

3. S1 T3 S3 T2 T1 S2

4. N = 3

2. r = 1 → ←

3. S3 T3 S1 T2 T1 S2

4. N = 2

2. r = 1 → ←

3. T3 S3 S1 T2 T1 S2

4. N = 1

8.6. LATIN SQUARES
The following example shows how 3 independent
permutations can be used to obtain a Latin square.
1) Generate a random permutation of the N possible
treatments (see Section 8.5) :

T3 S3 S1 T2 T1 S2

2) A simple Latin square can now be constructed by
“rotating” this permutation to the right. This can be done as
follows. Write the permutation found in step 1 down on the
first row. The second row consists of the same permutation,
but with all treatments shifted to the right. The rightmost
treatment is put on the empty place at the left. This is
repeated for all the rows until all the treatments appear once
in each column:

T3 S3 S1 T2 T1 S2

S2 T3 S3 S1 T2 T1

T1 S2 T3 S3 S1 T2

T2 T1 S2 T3 S3 S1

S1 T2 T1 S2 T3 S3

S3 S1 T2 T1 S2 T3

3) Generate 2 independent random permutations of the
figures 1 to N :
— one for the rows :

2 3 6 1 4 5

— and one for the columns :

3 4 6 2 5 1

4) The Latin square can now be found by sorting the rows
and columns of the simple Latin square according to the
2 permutations for the rows and columns :

3 4 6 2 5 1

2 T3 S3 S1 T2 T1 S2

3 S2 T3 S3 S1 T2 T1

6 T1 S2 T3 S3 S1 T2

1 T2 T1 S2 T3 S3 S1

4 S1 T2 T1 S2 T3 S3

5 S3 S1 T2 T1 S2 T3

↓

1 2 3 4 5 6

1 S1 T3 T2 T1 S3 S2

2 S2 T2 T3 S3 T1 S1

3 T1 S1 S2 T3 T2 S3

4 S3 S2 S1 T2 T3 T1

5 T3 T1 S3 S1 S2 T2

6 T2 S3 T1 S2 S1 T3

9. GLOSSARY OF SYMBOLS

Symbol Definition

a Intersection of linear regression of
responses on dose or ln(dose)

b Slope of linear regression of responses on
dose or on ln(dose)
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Symbol Definition

d Number of dose levels for each preparation
(excluding the blank in slope-ratio assays)

e Base of natural logarithms
(= 2.71828182845905...)

g Statistic used in Fieller’s theorem:

h Number of preparations in an assay,
including the standard preparation

m Potency estimate obtained as a ratio of
effects in general linear models

n Number of replicates for each treatment

p Probability of a given statistic being larger
than the observed value. Also used as the
ratio r/n in probit analysis

r The number of responding units per
treatment group in assays depending upon
quantal responses

s Estimate of standard deviation ( )

s2 Estimate of residual variance given by error
mean square in analysis of variance

t Student’s statistic (Table 8.2.)

u Observed response in four-parameter
analysis

v11,v12,v22 (Co)variance multipliers for numerator and
denominator of ratio m in Fieller’s theorem

w Weighting coefficient

x The ln(dose)

y Individual response or transformed
response

A Assumed potencies of test preparations
when making up doses

B Mean response to blanks in slope-ratio
assays

C Statistic used in the calculation of

confidence intervals :

C1, ... , Cn Mean response to each column of a Latin
square design

D1,D2 Mean response on time 1 or time 2 in the
twin cross-over design

F Ratio of 2 independent estimates of variance
following an F-distribution (Table 8.1.)

GS,GT, ... Treatment values used in the analysis of
variance for slope-ratio assays

Symbol Definition

HP, HL Multipliers used in the analysis of variance
for parallel-line assays

HB, HI Multipliers used in the analysis of variance
for slope-ratio assays

I In parallel-line assays, the ln of the ratio
between adjacent doses. In slope-ratio
assays, the interval between adjacent doses

JS, JT, ... Linearity values used in the analysis of
variance for slope-ratio assays

K Correction term used in the calculation of
sums of squares in the analysis of variance

L Width of confidence interval in logarithms

LS, LT, ... Linear contrasts of standard and test
preparations

M′ ln potency ratio of a given test preparation

N Total number of treatments in the
assay (= dh)

PS, PT, ... Sum of standard and test preparations

R Estimated potency of a given test
preparation

R′ Potency ratio of a given test preparation

R1, ... , Rn Mean response in each of rows 1 to n of a
Latin square design, or in each block of a
randomised block design

S Standard preparation

S1, ... , Sd Mean response to the lowest dose 1 up
to the highest dose d of the standard
preparation S

SS Sum of squares due to a given source of
variation

T, U, V, ... Test preparations

T1, ... , Td Mean response to the lowest dose 1 up to
the highest dose d of test preparation T

V Variance coefficient in the calculation of
confidence limits

W Weighting factor in combination of assay
results

X Linear structure or design matrix used in
general linear models

Y Vector representing the (transformed)
responses in general linear models

Z The first derivative of

α Upper asymptote of the ln(dose)-response
curve in four-parameter analysis
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Symbol Definition

β Slope-factor of the ln(dose)-response curve
in four-parameter analysis

γ The ln(dose) giving 50 per cent response in
the four-parameter analysis

δ Lower asymptote of the ln(dose)-response
curve in four-parameter analysis

3.141592653589793238...

Cumulative standard normal distribution
function (Table 8.4.)

χ2 Chi-square statistic (Table 8.3.)
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